• Title/Summary/Keyword: magnetic force microscopy

Search Result 69, Processing Time 0.027 seconds

Current Trend of Ultrahigh Vacuum Low Temperature Scanning Tunneling Microscopy (초고진공 저온 주사터널 현미경 장치의 최신 경향)

  • Ham, Ungdon;Yeom, Han Woong
    • Vacuum Magazine
    • /
    • v.3 no.4
    • /
    • pp.14-18
    • /
    • 2016
  • In this article, we will summarize recent advances in ultrahigh vacuum (UHV) low-temperature scanning tunneling microscopy (STM) during the last decade. Leading STM groups have finished or are constructing UHV milli-Kelvin high magnetic field STM capable of a few tens of milli-Kelvin and ~ 10 tesla. Applications with UHV sub-Kelvin high magnetic STM have been increased since mid-2000's. Active research using UHV low temperature tuning fork atomic force microscopes and UHV photon low-temperature scanning tunneling microscopes will be introduced. Considering these advances of UHV low-temperature STM we will discuss next trend in STM in the near future.

The Effect of Magnetic Field Direction on the Imaging Quality of Scanning Electron Microscope

  • Ai, Libo;Bao, Shengxiang;Hu, Yongda;Wang, Xueke;Luo, Chuan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • The significant reduction of the image quality caused by the magnetic field of samples is a major problem affecting the application of SEM (scanning electron microscopy) in the analysis of electronic devices. The main reason for this is that the electron trajectory is deflected by the Lorentz force. The usual solution to this problem is degaussing the sample at high temperatures. However, due to the poor heat resistance of some electronic components, it is imperative to find a method that can reduce the impact of magnetic field on the image quality and is straightforward and easy to operate without destroying the sample. In this paper, the influence of different magnetic field directions on the imaging quality was discussed by combining the experiment and software simulation. The principle of the method was studied, and the best observation direction was obtained.

Formation of $ZrO_2$ nanodots for the enhanced flux pinning properties in high $T_c$ superconducting films (초전도 자속고정 특성 향상을 위한 $ZrO_2$ 나노점의 형성 연구)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Kim, Young-Kuk;Lee, Hye-Moon;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.15-18
    • /
    • 2008
  • To achieve high transport current without degradation under magnetic field, it is essential to artificially generate the pinning sites at which moving magnetic flux can be pinned. In this work, $ZrO_2$ nanodots were formed on the substrate surface using electro-spray deposition method. On top of the nanodots, the extended and effective pinning centers can be created. The positively charged Zr precursor solution was sprayed out from the needle using the corona discharge phenomena. Then, the sprayed precursor was deposited onto the negatively charged substrate surface followed by the heat treatment under the controlled atmosphere. Using the electrostatic force among the charged particles of precursor, evenly distributed and nano-sized dots were formed on the substrate surface. The size and density of the nanodots were studied by Atomic Force Microscopy. Also discussed are the effect of the deposition time and solution concentration on the size and density of the nanodot and processing variables in electro-spray method for the effective flux pinning centers in the superconducting films.

Microscopic Domain Structures in NiO Exchange-coupled Films

  • Hwang, D.G.;Kim, J.K.;Kim, S.W.;Lee, S.S.;Dreyer, M.;Gomez, R.D.
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.94-97
    • /
    • 2002
  • The dependence on nickel oxide thickness and a ferromagnetic layer thickness in unidirectional and isotropic exchange-coupled NiO/NiFe(Fe) bilayer films was investigated by magnetic force microscopy to better understand the relation between magnetic domain structure and exchange biasing at microscopic length scales. As the NiO thickness increased, the domain structure of unidirectional biased films formed smaller and more complex in-plane domains. By contrast, for the isotropically coupled films, large domains generally formed with increasing NiO thickness including a cross type domain with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing field, and the fact that the domain mainly originated from the strongest exchange coupled region was confirmed by imaging in an applied external field during a magnetization cycle.

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V.;Gareev, K.G.;Ionin, S.A.;Ryzhov, V.A.;Bogachev, Yu.V.;Klimenkov, B.D.;Kononova, I.E.;Moshnikov, V.A.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

A Study on the Microscopically Characteristics of Properties of the Magnetic Recording Disk (자기저장 디스크 표면의 물성치에 관한 미소특성 연구)

  • Hwang, Pyung;Kim, Do-Hyung;Kim, Jang-Kyo
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.52-58
    • /
    • 1999
  • Nano-indentation and nano-scratch tests were peformed to assess the mechanical and tribological properties of the coating on a commercially available thin-film magnetic recording disk. Surface topography and roughness of the disk was studied using atomic force microscopy. The hardness and elastic modulus data show a peak at an indentation depth equivalent to the thickness of carbon overcoat, indicating strong influence of the coatin $g_strate interaction and the coating surface roughness on the measurements. The variations of surface roughness data were analysed statistically based on the normal probability distribution theories and Weibull cumulative probability theories.es.

Cross Type Domain in Exchange-Coupled NiO/NiFe Bilayers

  • Hwang, D.G;Kim, J.K;Lee, S.S;Gomez, R.D
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • The dependences of microscopic magnetic domain on film thickness in unidirectional and isotropic exchange-coupled NiO/NiFe bilayers were investigated by magnetic force microscopy to better understand for exchange biasing. As NiO thickness increases, microscopic domain structure of unidirectional biased film changed to smaller and more complicated domains. However, for isotropic-coupled film a new cross type domain appeared with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing fields and the fact that the domain was originated by the strongest exchange coupling region was confirmed from the dynamic domain configuration during a magnetization cycle.

Preparation of Chitosan-coated Magnetite Nanoparticles by Sonochemical Method for MRI Contrast Agent

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Choi, Eun-Jung
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.124-128
    • /
    • 2009
  • Magnetic nanoparticles were synthesized by using the sonochemical method with oleic acid as a surfactant. The average size of the magnetite nanoparticles was controlled by varying the ratio R=[$H_2O$]/[surfactant] in the range of 2 to 9 nm. To prepare chitosan-coated magnetite nanoparticles, chitosan solution was added to a magnetite colloid suspension under ultrasonication at room temperature for 20 min. The chitosan-coated magnetite nanoparticles were characterized by several techniques. Atomic force microscopy (AFM) was used to image the chitosan-coated nanoparticles. Magnetic hysteresis measurement was performed by using a superconducting quantum interference device (SQUID) magnetometer to investigate the magnetic properties of the magnetite nanoparticles and the chitosan-coated magnetite nanoparticles. The SQUID measurements revealed the superparamagnetism of both nanoparticles. The T1- and T2-weighted MR images of these chitosan-coated magnetite colloidal suspensions were obtained with a 4.7 T magnetic resonance imaging (MRI) system. The chitosancoated magnetite colloidal suspensions exhibited enhanced MRI contrasts in vitro.