DOI QR코드

DOI QR Code

Cross Type Domain in Exchange-Coupled NiO/NiFe Bilayers

  • Hwang, D.G (Department of Computer and Electronic Physics, Sangji University) ;
  • Kim, J.K (Dept. of Physics, Dankook University) ;
  • Lee, S.S (Department of Computer and Electronic Physics, Sangji University) ;
  • Gomez, R.D (Department of Electrical and Computer Engineering, University of Maryland, College Park)
  • Published : 2002.03.01

Abstract

The dependences of microscopic magnetic domain on film thickness in unidirectional and isotropic exchange-coupled NiO/NiFe bilayers were investigated by magnetic force microscopy to better understand for exchange biasing. As NiO thickness increases, microscopic domain structure of unidirectional biased film changed to smaller and more complicated domains. However, for isotropic-coupled film a new cross type domain appeared with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing fields and the fact that the domain was originated by the strongest exchange coupling region was confirmed from the dynamic domain configuration during a magnetization cycle.

Keywords

References

  1. J. Appl. Phys. v.62 D. Mauri;H. C. Siegmann;P. S. Bagus;E. Kay https://doi.org/10.1063/1.339367
  2. Phys. Rev. v.B35 A. P. Malozemoff
  3. J. Appl. Phys. v.63 A. P. Malozemoff https://doi.org/10.1063/1.340591
  4. Phys. Rev. Lett. v.78 N. C. Koon https://doi.org/10.1103/PhysRevLett.78.4865
  5. Phys. Rev. Lett. v.18 T. C. Schulthess;W. H. Butler
  6. J. Mag. Mag.Mat. v.200 A. E. Berkowitz;K. Takano https://doi.org/10.1016/S0304-8853(99)00453-9
  7. Phys. Rev. Lett. v.70 A. E. Berkowitz;K. Takano
  8. Phys. Rwv. v.B61 Z. Lie;S. Zhang
  9. Appl. Phys. Lett. v.77 Z. Lie;S. Zhang https://doi.org/10.1063/1.126997
  10. Phys. Rev. v.B63 M. S. Stiles;R. D. Mcmichael
  11. Phys. Rev. Lett. v.84 V. I. Nikitenko (et al.) https://doi.org/10.1103/PhysRevLett.84.765
  12. Phys. Rev. v.B57 V. I. Nikitenko (et al.) https://doi.org/10.1103/PhysRevLett.84.765
  13. J. Appl. Phys. v.83 V. I. Nikitenko (et al.) https://doi.org/10.1063/1.367663
  14. J. Magn. Magn Mater v.198 no.199 V. I. Nikitenko (et al.) https://doi.org/10.1016/S0304-8853(98)01197-4
  15. IEEE Trans. Magn. v.35 X. Portier;A. K. Pettiford-LOng;S. Mao;A. M. Goodman;H. Laidly;K. OGrady https://doi.org/10.1109/20.801094
  16. Phys. Rev. v.B61 H. D. Chopra;D. X. Yang;P. J. Chen;H. J. Brown;L. J. Swartzendruber;W. F. Egelhoff, Jr https://doi.org/10.1109/20.801094
  17. J. Appl. Phys. v.87 H. D. Chopra;D. X. Yang;P. J. Chen;H. J. Brown;L. J. Swartzendruber;W. F. Egelhoff, Jr https://doi.org/10.1063/1.373416
  18. J. Appl. Phys. v.85 Z. Qian;M. T. Kief;P. K. George;J. M. Sivertsen;J. H. Judy https://doi.org/10.1063/1.369882
  19. J. Mangn. Magn Mater v.223 M. Cartier;S. Auffret;Y. Samson;P. Bayle-guillemaud;B. Dieny https://doi.org/10.1016/S0304-8853(00)00591-6
  20. J. Appl. Phys. v.87 J. Yu;A. D. Kent;S. S. Parkin https://doi.org/10.1063/1.373244
  21. J. Appl. Phys. v.79 J. Ding;J. Zhu https://doi.org/10.1063/1.362164
  22. J. Appl. Phys. v.87 J. C. Wu;H. W. Huang;C. H. Lai;T. H. Wu https://doi.org/10.1063/1.373211
  23. Phys Rev. v.B63 M. D. Stiles;R. D. McMichael https://doi.org/10.1063/1.373211
  24. Appl. Phys. Lett. v.77 Z. Li;S. Zhang https://doi.org/10.1063/1.126997
  25. Phys. Rev. v.B61 Z. Li;S. Zhang https://doi.org/10.1063/1.126997
  26. J. Appl. Phys. v.87 A. F. Khapikov;J. W. Harrell;H. Fujiwara;C. Hou https://doi.org/10.1063/1.373213
  27. IEEE Trans. Magn. v.35 Fujiwara(et al.) https://doi.org/10.1109/20.801092
  28. J. Appl. Phys. v.74 S. Soeya;S. Tadokoro;T. Imagawa;M. Fuyama https://doi.org/10.1063/1.355149
  29. J. Magn. Magn. Mater. v.224 G. H. Yu(et al.) https://doi.org/10.1016/S0304-8853(00)01337-8
  30. Phys. Rev. Lett. v.85 F. Y. Yang;C. L. Chien https://doi.org/10.1103/PhysRevLett.85.2597
  31. Thin ferromagnetic films M. Prutton https://doi.org/10.1103/PhysRevLett.85.2597
  32. M. Prutton, Thin ferromagnetic films (Butterworth, Washington D.C., 1964), p.162