DOI QR코드

DOI QR Code

Microscopic Domain Structures in NiO Exchange-coupled Films

  • Hwang, D.G. (Dept. of Computer and Electronic Physics, Sangji University) ;
  • Kim, J.K. (Dept. of Physics Dankook University) ;
  • Kim, S.W. (Dept. of Physics Dankook University) ;
  • Lee, S.S. (Dept. of Computer and Electronic Physics, Sangji University) ;
  • Dreyer, M. (Dept. of Electrical and Computer Engineering, University of Maryland) ;
  • Gomez, R.D. (Dept. of Electrical and Computer Engineering, University of Maryland)
  • Published : 2002.09.01

Abstract

The dependence on nickel oxide thickness and a ferromagnetic layer thickness in unidirectional and isotropic exchange-coupled NiO/NiFe(Fe) bilayer films was investigated by magnetic force microscopy to better understand the relation between magnetic domain structure and exchange biasing at microscopic length scales. As the NiO thickness increased, the domain structure of unidirectional biased films formed smaller and more complex in-plane domains. By contrast, for the isotropically coupled films, large domains generally formed with increasing NiO thickness including a cross type domain with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing field, and the fact that the domain mainly originated from the strongest exchange coupled region was confirmed by imaging in an applied external field during a magnetization cycle.

Keywords

References

  1. Phys. Rev. Lett. v.84 V. I. Nikitenko;V. S. Gomakov;A. J. Shapiro;R. D. Shull;K. Liu;S. M. zhou;C. L. Chien https://doi.org/10.1103/PhysRevLett.84.765
  2. Phys. Rev. B. v.57 V. I. Nikitenko;V. S. Gomakov;A. J. Shapiro;R. D. Shull;K. Liu;S. M. zhou;C. L. Chien https://doi.org/10.1103/PhysRevB.57.R8111
  3. J. Appl. Phys. v.83 V. I. Nikitenko;V. S. Gomakov;A. J. Shapiro;R. D. Shull;K. Liu;S. M. zhou;C. L. Chien https://doi.org/10.1063/1.367663
  4. IEEE Trans. Magn. v.35 X. Portier;A. K. Petford-Long;S. Mao;A. M. Goodman;H. Laidly;K. O'Grady https://doi.org/10.1109/20.801094
  5. Phys. Rev. B v.61 H. D. Chopra;D. X. Yang;P. J. Chen;H. J. Brown;L. J. Swartzendruber;W. F. Egelhoff, Jr. https://doi.org/10.1103/PhysRevB.61.15312
  6. J. Appl. Phys. v.87 H. D. Chopra;D. X. Yang;P. J. Chen;H. J. Brown;L. J. Swartzendruber;W. F. Egelhoff, Jr. https://doi.org/10.1063/1.373416
  7. J. Appl. Phys. v.85 Z. Qian;M. T. Kief;P. K. George;J. M. Sivertsen;J. H. Judy https://doi.org/10.1063/1.369882
  8. J. Magn. Magn. Mater. v.223 M. Cartier;S. Auffret;Y. Samson;P. bayle-Guillemaud;B. Dieny https://doi.org/10.1016/S0304-8853(00)00591-6
  9. J. appl. Phys. v.87 J. Yu;A. D. Kent;S. S. Parkin https://doi.org/10.1063/1.373244
  10. J. Appl. Phys. v.79 J. Ding;J. Zhu https://doi.org/10.1063/1.362164
  11. J. Appl. Phys. v.87 J. C. Wu;H. W. Huang;C. H. Lai;T. H. Wu https://doi.org/10.1063/1.373211
  12. Thin ferromagnetic films M. Purtton
  13. J. Magn. Magn. Mater v.200 A. E. Berkowitz;K. Takano https://doi.org/10.1016/S0304-8853(99)00453-9
  14. Phys. Rev. Lett. v.70 A. E. Berkowitz;K. Takano