• Title/Summary/Keyword: magnetar

Search Result 11, Processing Time 0.026 seconds

X-ray Data Analysis to Search for Magnetar Candidates in the Galactic Plane

  • Park, Woochan;An, Hongjun
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.133-141
    • /
    • 2018
  • We report on our Galactic plane searches for magnetars in the archival Chandra X-ray Observatory (CXO) data. We summarize the properties of known magnetars and use them to establish a procedure for magnetar searches. The procedure includes four steps: source finding, spectral characterization, optical counterpart checks, and period searches. We searched 1,282 archival CXO observations, found 32,838 X-ray sources, and selected 25 intriguing candidates using the developed procedure. Although we do not firmly identify a magnetar among them, we significantly reduced the number of targets in future magnetar searches to be done with better X-ray telescopes.

A correlation analysis about properties of quiescence magnetar

  • Seo, Jiwoo;Lee, Jaewon;An, Hongjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2021
  • 우리는 quiescent state magnetar의 물리적 특성을 연구하기 위해 복사특성이 잘 알려진 24개의 대상을 선정하였고 가장 어두운 시기(quiescent state)의 Chandra와 XMM-Newton의 X-ray 관측 데이터를 분석하여 복사특성과 시간 특성을 측정하였다. 이 측정을 이용하여 복사특성과 시간 특성 사이의 여러 경우에 대해 상관관계를 분석하였다. 그 결과 기존에 높은 상관관계를 갖는 것으로 알려진 표면 자기장(Bs)과 흑체복사 광도(LBB), Bs와 X-ray photon index (ΓX) 관계를 더 많은 magnetar에 대하여 재확인하였으며, spin-down rate (Ṗ)와 LBB, characteristic age (𝜏c)와 LBB의 새로운 유의미한 관계를 찾았다. 또한 magnetar의 pulsed fraction (PF)과 흑체복사 반경(RBB), PF와 ΓX, 그리고 Ṗ과 ΓX가 서로 상관되어 있다는 단서를 확인하였다.

  • PDF

ON SPATIAL DISTRIBUTION OF SHORT GAMMA-RAY BURSTS FROM EXTRAGALACTIC MAGNETAR FLARES

  • Chang, Heon-Young;Kim, Hee-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Recently, one interesting possibility is proposed that a magnetar can be a progenitor of short and hard gamma-ray bursts (GRBs). If this is true, one may expect that the short and hard GRBs, at least some of GRBs in this class, are distributed in the Euclidean space and that the angular position of these GRBs is correlated with galaxy clusters. Even though it is reported that the correlation is statistically marginal, the observed value of < $V/V_{max}$ > deviates from the Euclidean value. The latter fact is often used as evidence against a local extragalactic origin for short GRB class. We demonstrate that GRB sample of which the value of < $V/V_{max}$ > deviates from the Euclidean value can be spatially confined within the low value of z. We select very short bursts (TgO < 0.3 sec) from the BATSE 4B catalog. The value of < $V/V_{max}$ > of the short bursts is 0.4459. Considering a conic-beam and a cylindrical beam for the luminosity function, we deduce the corresponding spatial distribution of the GRB sources. We also calculate the fraction of bursts whose redshifts are larger than a certain redshift z', i.e. f>z'. We find that GRBs may be distributed near to us, despite the non-Euclidean value of < $V/V_{max}$ >. A broad and uniform beam pattern seems compatible with the magnetar model in that the magnetar model requires a small $z_{max}$.

Timing analysis for the magnetar-like pulsar, PSR J1119-6127

  • Lin, Chun-Che Lupin;Hui, C.Y.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2018
  • Studies on rotation-powered pulsars with strong surface magnetic field may help us clarify the unclear link between magnetars and canonical radio pulsars because the magnetar-like emission is expected to be observed. PSR J1119-6127 associated with SNR G292.2-0.5 has a high magnetic field of $4.1{\times}1013$ gauss, and a young characteristic age of ~1700 years can be served as the good candidate to compare with magnetars and rotation-powered pulsars. The glitch accompanied by the radiative changes detected in 2007 is the first case we observed for a rotationally powered radio pulsar. This pulsar experienced magnetar-like outbursts in mid. 2016, similar to the 2006 transition occurred on the other radio-quiet rotation-powered pulsar with strong surface magnetic field, PSR J1846-0258. In this talk, I'll report the investigation with X-ray and gamma-ray data of this magnetar-like pulsar. A sudden decrease in the gamma-ray emission at the GeV band was detected immediately after the X-ray outburst. Accompanying with the disappearance of the radio pulsation, the gamma-ray pulsation cannot be resolved as well after the outburst. We tried to derive the timing behavior and some intriguing features of this pulsar in this work corresponding to the outburst using the Swift data, NuSTAR and XMM observations.

  • PDF

Correlation Study of Temporal and Emission Properties of Quiescent Magnetars

  • Jiwoo Seo;Jaewon Lee;Hongjun An
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.41-57
    • /
    • 2023
  • We measured temporal and emission properties of quiescent magnetars using archival Chandra and XMM-Newton data, produced a list of the properties for 17 magnetars, and revisited previously suggested correlations between the properties. Our studies carried out with a larger sample, better spectral characterizations, and more thorough analyses not only confirmed previously-suggested correlations but also found new ones. The observed correlations differ from those seen in other neutron-star populations but generally accord with magnetar models. Specifically, the trends of the intriguing correlations of blackbody luminosity (LBB) with the spin-inferred dipole magnetic field strength (BS) and characteristic age (τc) were measured to be LBB ∝ B1.5S and LBB ∝ τ-0.6c, supporting the twisted magnetosphere and magnetothermal evolution models for magnetars. We report the analysis results and discuss our findings in the context of magnetar models.

Pulsed γ-ray emission from magnetar 1E 2259+586

  • Wu, Jason Hung Kit;Hui, Chung Yue;Huang, Regina Hsiu Hui;Kong, Albert Kwok Hing;Cheng, Kwong Sang;Takata, Jumpei;Tam, Pak Hin Thomas;Wu, Eric Man Ho;Liu, Joe
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.83-85
    • /
    • 2013
  • Anomalous X-ray pulsars (AXPs) are thought to be magnetars which are young isolated neutron stars with extremely strong magnetic fields of > $10^{14}$ Gauss. Their tremendous magnetic fields inferred from the spin parameters provide a huge energy reservoir to power the observed X-ray emission. High-energy emission above 0.3 MeV has never been detected despite intensive search. Here, we present the possible Fermi Large Area Telescope (LAT) detection of ${\gamma}$-ray pulsations above 200 MeV from the AXP, 1E 2259+586, which puts the current theoretical models of ${\gamma}$-ray emission mechanisms of magnetars into challenge. We speculate that the high-energy ${\gamma}$-rays originate from the outer magnetosphere of the magnetar.

Electric Charge and Magnetic Flux on Astrophysical Black Hole

  • LEE HYUN KYU
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.301-303
    • /
    • 2001
  • We suggest a possible scenario of an astrophysical black hole with non-vanishing electric charge and magnetic flux. The equilibrium charge on a rotating black hole in a force-free magnetosphere is calculated to be Q $\~$ BJ with a horizon flux of ${\~}BM^2$, which is not large enough to disturb the background Kerr geometry. Being similar to the electric charge of a magnetar, in sign and order of magnitude, both electric charge and magnetic flux are supposed to be continuous onto a black hole.

  • PDF

An Investigation of X-ray pulsation searches: Weighted vs unweighted H test

  • Lee, Jaewon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.52.3-52.3
    • /
    • 2021
  • Timing analysis에서 pulsar 또는 magnetar의 pulsation 측정은 background 또는 주변의 다른 source의 영향으로 매우 세밀하게 측정을 진행해야 할 수 있다. 하지만 gamma-ray 영역에서는 instrument의 낮은 imaging resolution으로 인해 likeihood 분석법을 사용하며, pulsation측정의 sensitivity를 향상시키기 위해 weighted H-test를 적용하고 있다. weighted H-test는 Instrument의 responses와 source, background의 radiational properties를 이용하여 각 photon의 probability를 계산하고 이를 weight하여 pulsation detection의 sensitivity를 향상시키는 방법으로 이번 연구를 통해 이를 X-ray에서 적용할 수 있도록 확장하였다. 이번 발표에서는 X-ray 데이터 중 상대적으로 낮은 imaging resolution을 갖는 XMM-Newton data에 weighted H-test를 적용하여 기존의 H-test와의 차이를 비교해보고, weighted H-test가 갖는 이점에 대하여 논의하고자 한다.

  • PDF

Pulsar observations in mm-wavelengths

  • Kim, Chunglee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.79.2-79.2
    • /
    • 2014
  • Galactic radio pulsar population is diverse. So far about 2300 radio pulsars are known in the Milky Way, in addition to Large and Small Magellanic Clouds. Radio pulsar observations at a few hundreds MHz up to ~10 GHz have been active and they are proved to be fruitful. Low frequencies are preferred mainly because of the steep ratio spectrum of pulsars. However, developments in pulsar backends (e.g. a wide-band spectrometer) and improved system sensitivities make it possible to observe pulsars at higher frequencies using large, single-dish telescopes up to ~18 GHz. Going forward, mm-wavelength observations is expected to open a new window in pulsar astronomy. In particular, frequencies well above ~15 GHz are pre-requisite to detect pulsars in the Galactic Center where radio pulsed signals are severely scattered by interactions with the interstellar medium. Recent discoveries strongly imply that there are subsets of pulsars with an apparently flat spectrum, such as magnetars. In April 2014, the first pulsar (magnetar) was discovered only 3 arcmin from Sgr A*, PSR J1745-2900. We will present a brief overview on pulsar populations focusing on those observable at high frequencies. We will also discuss prospects of pulsar observations in mm-wavelengths and how we can utilize the Korean VLBI network.

  • PDF

Search for new magnetar candidates in Galactic plane.

  • Park, Woochan;An, Hongjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.55.3-55.3
    • /
    • 2018
  • Magnetars are neutron stars powered by strong magnetic field (B > $10^{14}G$). Their spin period is in the range of 2 - 12s. The magnetic stress in the star may distort the crust (observed as outbursts), so magnetars (especially in outbursts) may emit gravitational waves. There are 29 magnetars known (potential gravitational waves sources), and increasing the number will increase the chance of detecting low-frequency gravitational waves. In addition, magnetars can be used for studying matter under extreme condition. In this study, we searched for more magnetars using extensive Chandra archival data and found 11 candidates. Due to the limited sensitivity of Chandra, form identification cannot be made, and more sensitivity X-ray data are needed.

  • PDF