DOI QR코드

DOI QR Code

ON SPATIAL DISTRIBUTION OF SHORT GAMMA-RAY BURSTS FROM EXTRAGALACTIC MAGNETAR FLARES

  • Published : 2002.03.01

Abstract

Recently, one interesting possibility is proposed that a magnetar can be a progenitor of short and hard gamma-ray bursts (GRBs). If this is true, one may expect that the short and hard GRBs, at least some of GRBs in this class, are distributed in the Euclidean space and that the angular position of these GRBs is correlated with galaxy clusters. Even though it is reported that the correlation is statistically marginal, the observed value of < $V/V_{max}$ > deviates from the Euclidean value. The latter fact is often used as evidence against a local extragalactic origin for short GRB class. We demonstrate that GRB sample of which the value of < $V/V_{max}$ > deviates from the Euclidean value can be spatially confined within the low value of z. We select very short bursts (TgO < 0.3 sec) from the BATSE 4B catalog. The value of < $V/V_{max}$ > of the short bursts is 0.4459. Considering a conic-beam and a cylindrical beam for the luminosity function, we deduce the corresponding spatial distribution of the GRB sources. We also calculate the fraction of bursts whose redshifts are larger than a certain redshift z', i.e. f>z'. We find that GRBs may be distributed near to us, despite the non-Euclidean value of < $V/V_{max}$ >. A broad and uniform beam pattern seems compatible with the magnetar model in that the magnetar model requires a small $z_{max}$.

Keywords

References

  1. MNRAS v.312 Blain, A.W.;Natarajan, P. https://doi.org/10.1046/j.1365-8711.2000.03318.x
  2. MNRAS v.328 Balastegui, A.;Ruiz-Lapuente, P.;Canal, R. https://doi.org/10.1046/j.1365-8711.2001.04888.x
  3. ApJ v.554 Chang, H.-Y.;Yi, I. https://doi.org/10.1086/321354
  4. ApJ v.401 Cline, D.B.;Hong, W. https://doi.org/10.1086/186670
  5. ApJ v.527 Cline, D.B.;Mathhey, C.;Otwinowski, S. https://doi.org/10.1086/308094
  6. astro-ph/0103235 Duncan, R. https://doi.org/10.1063/1.1419599
  7. ApJ v.329 Duncan, R.;Thompson, C.
  8. ApJ v.538 Hakkila, J.;Haglin, D.J.;Pendleton, G.N.;Mallozzi, R. S.;Meegan, C.A.;Roiger, R.J. https://doi.org/10.1086/309107
  9. ApJ v.490 Kobayashi, S.;Piran, T.;Sari, R. https://doi.org/10.1086/512791
  10. ApJ v.467 Kolatt, T.;Piran, T. https://doi.org/10.1086/310210
  11. ApJ v.413 Kouveliotou, C.;Meegan, C.A.;Fishman, G.J.;Bhat, N.P.;Briggs, M.S.;Koshut, T.M.;Paciesas, W.S.;Pendleton, G.N. https://doi.org/10.1086/186969
  12. ApJ v.524 MacFadyen, A.I.;Woosley, S.E. https://doi.org/10.1086/307790
  13. ApJ v.424 Mao, S.;Yi, I. https://doi.org/10.1086/187292
  14. ApJ v.395 Narayan, R.;Paczynski, b.;Piran, T. https://doi.org/10.1086/186493
  15. ApJS v.122 Paciesas, W.S.;Meegan, C.A.;Pendleton, G.N.;Briggs, M.S.;Kouveliotou, C.;Koshut, T.M.;Lestrade, J.P.;McCollouhg, M.L.;Brainerd, J.J.;Hakkila, K.J.;Henze, W.;Preece, R.D.;Connaughton, V.;Kippen, R.M.;Mallozzi, R.S.;Fishman, G.J.;Richardson, G.A.;Sahi, M. https://doi.org/10.1086/313224
  16. ApJ v.494 Paczynski, B. https://doi.org/10.1086/311148
  17. Phy. Rep. v.314 Piran, T. https://doi.org/10.1016/S0370-1573(98)00127-6
  18. ApJ v.430 Rees, M.;Meszaros, P. https://doi.org/10.1086/187446
  19. ApJ v.519 Sari, R.;Piran, T.;Halpern, J.P. https://doi.org/10.1086/312109
  20. ApJ v.497 Tavani, M. https://doi.org/10.1086/311276
  21. ApJ v.405 Woosley, S.E. https://doi.org/10.1086/172359

Cited by

  1. Anisotropic pressure in dense neutron matter under the presence of a strong magnetic field vol.707, pp.1, 2012, https://doi.org/10.1016/j.physletb.2011.12.003
  2. Finite temperature effects on anisotropic pressure and equation of state of dense neutron matter in an ultrastrong magnetic field vol.84, pp.6, 2011, https://doi.org/10.1103/PhysRevC.84.065802