• 제목/요약/키워드: mackey-glass time series

검색결과 24건 처리시간 0.025초

보조벡터 머신을 이용한 시계열 예측에 관한 연구 (A study on the Time Series Prediction Using the Support Vector Machine)

  • 강환일;정요원;송영기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.315-315
    • /
    • 2000
  • In this paper, we perform the time series prediction using the SVM(Support Vector Machine). We make use of two different loss functions and two different kernel functions; i) Quadratic and $\varepsilon$-insensitive loss function are used; ii) GRBF(Gaussian Radial Basis Function) and ERBF(Exponential Radial Basis Function) are used. Mackey-Glass time series are used for prediction. For both cases, we compare the results by the SVM to those by ANN(Artificial Neural Network) and show the better performance by SVM than that by ANN.

시계열 예측을 위한 퍼지 학습 알고리즘 (Fuzzy Learning Algorithms for Time Series Prediction)

  • 김인택;공창욱
    • 한국지능시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.34-42
    • /
    • 1997
  • 본 논문은 새로은 퍼지 규칙의 생성을 위한 학습 알고리즘과 시계열 예측에의 응용을 다루고 있다. 데이터에서 IF-THEN문 형태의 퍼지 규칙을 생성시키는 과정에서 동일한 전건부(IF문)에 대해 상이한 후건부(THEN문)가 생겨 모순된 규칙을 형성시키는 경향이 있다. 수정된 중심값 방법(Modified Center Method)으로 명명된 새로운 알고리즘은 이와 같은 모순된 규칙의 형성을 효과적으로 해결하여, 시계열 예측을 수행하는데 그 오차를 줄일 수 있다. 알고리즘의 효과를 살표보기 위해 Mackey-Glass time series와 Gas Furnace data 분석에 적용하였다.

  • PDF

훼손된 시계열 데이터 분석을 위한 퍼지 시스템 융합 연구 (Fused Fuzzy Logic System for Corrupted Time Series Data Analysis)

  • 김동원
    • 사물인터넷융복합논문지
    • /
    • 제4권1호
    • /
    • pp.1-5
    • /
    • 2018
  • 본 논문에서는 노이즈에 의해 훼손된 시계열 데이터의 모델링에 대하여 다룬다. 모델링 기법으로, 논싱글톤 퍼지 시스템을 사용한다. 논싱글톤 퍼지 시스템의 주요특징은 미지의 비선형시스템의 입력이 퍼지값으로 모델링 된다는데 있다. 그러므로 퍼지시스템에 인가되는 학습데이터나 입력데이터 등이 노이즈나 외부 환경에 의해 변형된 경우에 매우 유용하게 적용될 수 있다. 성능비교를 위해 벤치마크 데이터로 잘 알려진 Mackey-Glass 데이터를 사용한다. 이들 데이터 모델링을 통하여 결과를 비교, 분석하여 논싱글톤 퍼지시스템이 잡음에 대하여 보다 강인하고 효율적임을 본 논문에서 보인다.

확장된 퍼지엔트로피 클러스터링을 이용한 카오스 시계열 데이터 예측 (Chaotic Time Series Prediction using Extended Fuzzy Entropy Clustering)

  • 박인규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(3)
    • /
    • pp.5-8
    • /
    • 2000
  • In this paper, we propose new algorithms for the partition of input space and the generation of fuzzy control rules. The one consists of Shannon and extended fuzzy entropy function, the other consists of adaptive fuzzy neural system with back propagation teaming rule. The focus of this scheme is to realize the optimal fuzzy rule base with the minimal number of the parameters of the rules, reducing the complexity of the system. The proposed algorithm is tested with the time series prediction problem using Mackey-Glass chaotic time series.

  • PDF

시계열 예측을 위한 DNA코딩 기반의 신경망 진화 (Evolutionary Neural Network based on DNA coding method for Time series prediction)

  • 이기열;이동욱;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.315-323
    • /
    • 2000
  • 본 논문에서는 생명창발과 진화에 기반한 신경망 구성방법을 제안한다. 이 방법은 생뭉의 DNA 구조의 특성과 식물의 생장에 기반을 둔 방법이다. 본 논문에서 제안한 방법은 DNA 코딩 방법과 L-system의 생장 구칙을 이용하여 신경망을 구성하는 방법이닫. L-system은 병렬적인 제조합 규칙을 이용하여, DNA 코딩 방법은 표현의 제약이 없는 표기법이다. 또한 진화 알고리듬은 다윈의 자연도태를 모방한 탐색법으로 다양한 해공간의 표현과 높은 효율로 탐색이 가능하다. 본 논문에서는 이러한 방법들을 이용햐 신경망을 구성하고, 신경망의 Mackey-Glass, Sunspot, KOSPI 같은 시계열 예측분제에 적용하여 유효성을 입증하고자 한다.

  • PDF

변형된 입력을 이용한 퍼지 시계열 예측 방법 (A Fuzzy Time series Prediction method using modified inputs)

  • 이성록;김인택
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.99-104
    • /
    • 1998
  • 본 논문은 효과적인 시계열 예측을 위한 새로운 퍼지 학습방법을 제안한다. 기존의 학습방법에서는 입력 데이터를 F(y(t),y(t-1),y(t-2)..)의 형태로 주어 예측을 수행했으나 본 논문에서 제안한 방법에서는 입력 데이터를 F(y(t)-y(t-1),y(t-1)-y(t-2)..)로 설정한다. 이것은 각 입력값의 차이를 새로운 입력으로 사용함으로써 유사한 시계열 분포를 좀더 능동적인 퍼지 규칙으로 만들기 때문에 Non-stationary한 데이터뿐만 아니라 기존의 시계열 데이터 예측방법 보다 나은 결과를 나타낸다. 알고리즘의 수행능력을 살펴보기 위해 Mackey-Glass time series와 Lorenz data를 사용하였다.

  • PDF

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Seo, Sang-Wook;Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 2008
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the enviromuent. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Lee, Dong-Wook;Kong, Seong-G;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.920-924
    • /
    • 2005
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the environment. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

  • PDF

시계열 예측을 위한 DNA 코딩 방법 (DNA Coding Method for Time Series Prediction)

  • 이기열;선상준;이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.280-280
    • /
    • 2000
  • In this paper, we propose a method of constructing equation using bio-inspired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants. Here is. we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting mechanism. The DNA coding method has no limitation in expressing the production rule of L-system. Evolutionary algorithms motivated by Darwinian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it to one step ahead prediction of Mackey-Glass time series.

  • PDF

퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링 (Fuzzy Neural System Modeling using Fuzzy Entropy)

  • 박인규
    • 한국멀티미디어학회논문지
    • /
    • 제3권2호
    • /
    • pp.201-208
    • /
    • 2000
  • 이 논문에서는 시계열 예측을 위하여 퍼지 엔트로피에 의한 입력공간의 분할과 퍼지 제어규칙을 자동으로 생성하는 방법을 제안하고, Mackey-Glass 데이터 Set을 이용한 시계열 예측 문제에 적용하여 그 성능을 검증한다. 이 방법은 샤논 함수와 퍼지 엔트로피 함수를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 이력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안되는 알고리즘을 매개변수의 수를 줄이기 위하여 제어 규칙의 결론부의 출력값은 신경망의 가중치로 구성하여 퍼지 신경망의 복잡도를 줄임으로서 추론형과 기술형 접근법을 혼합한 형태의 학습 알고리즘이다.

  • PDF