Proceedings of the Korean Institute of Intelligent Systems Conference (한국지능시스템학회:학술대회논문집)
- 1998.10a
- /
- Pages.99-104
- /
- 1998
A Fuzzy Time series Prediction method using modified inputs
변형된 입력을 이용한 퍼지 시계열 예측 방법
Abstract
본 논문은 효과적인 시계열 예측을 위한 새로운 퍼지 학습방법을 제안한다. 기존의 학습방법에서는 입력 데이터를 F(y(t),y(t-1),y(t-2)..)의 형태로 주어 예측을 수행했으나 본 논문에서 제안한 방법에서는 입력 데이터를 F(y(t)-y(t-1),y(t-1)-y(t-2)..)로 설정한다. 이것은 각 입력값의 차이를 새로운 입력으로 사용함으로써 유사한 시계열 분포를 좀더 능동적인 퍼지 규칙으로 만들기 때문에 Non-stationary한 데이터뿐만 아니라 기존의 시계열 데이터 예측방법 보다 나은 결과를 나타낸다. 알고리즘의 수행능력을 살펴보기 위해 Mackey-Glass time series와 Lorenz data를 사용하였다.
Keywords