• 제목/요약/키워드: machine tool accuracy

검색결과 609건 처리시간 0.022초

Modeling of surface roughness in electro-discharge machining using artificial neural networks

  • Cavaleri, Liborio;Chatzarakis, George E.;Trapani, Fabio Di;Douvika, Maria G.;Roinos, Konstantinos;Vaxevanidis, Nikolaos M.;Asteris, Panagiotis G.
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.169-184
    • /
    • 2017
  • Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.

퍼지의사결정법에 기반한 대학의 컴퓨터교육 만족도 분석 (An analysis of satisfaction index on computer education of university based on Fuzzy Decision Making Method)

  • 류경현;황병곤
    • 한국멀티미디어학회논문지
    • /
    • 제16권4호
    • /
    • pp.502-509
    • /
    • 2013
  • 정보화시대에 대학에서의 교양 컴퓨터교육과정은 컴퓨터에 대한 소양을 쌓고 정보화 사회에 능동적으로 대처할 수 있는 능력을 배양하여 생산성 향상은 물론 국가 간의 경쟁력에서 뒤지지 않게 하는데 목표를 두고 있다. 본 논문에서는 대학생을 대상으로 컴퓨터교육 만족도에 영향을 미치는 결정적인 변인의 발견 및 만족도를 분석한다. 전처리과정으로 자바 기반의 기계 학습 도구인 상관에의한 특성선택을 사용하여 최적의 변인을 선택한다. 그리고 퍼지의사결정법에 기반하여 각 변인의 가중치를 사용하여 최적의 변인을 생성하였다. 본 논문의 연구결과는 컴퓨터교육 만족도 자료의 분석에서 퍼지의사결정법을 제안하고, 재현율과 정밀도 분석에 의해 만족도 평가에 대한 정확성을 확인하였다.

조절할 수 있는 볼록한 덮개 서포트 벡터 머신에 기반을 둔 트래픽 분류 방법 (Traffic Classification based on Adjustable Convex-hull Support Vector Machines)

  • 위즈빈;최용도;길기범;김승호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.67-76
    • /
    • 2012
  • 트래픽 분류는 트래픽 관리하는데 중요한 역할을 차지하고 있다. 전통적인 방법은 P2P와 암호화 트래픽을 제대로 분류할 수 없는 문제가 있다. 서포트 벡터 머신은 기존의 문제를 해결할 수 있고 병목 현상을 극복할 수 있는 유용한 분류 도구이다. 하지만 서포트 벡터 머신의 주요 장점은 이차 프로그래밍(QP)문제 때문에 큰 데이터 집단을 훈련하는데 시간을 소모한다. 그러나 유용한 서포트 벡터는 전체 데이터에서 극히 일부분이다. 만약 우리가 훈련전에 쓸모없는 벡터들을 삭제할 수 있다면, 시간을 절약하고 정확도를 유지할 수 있다. 이 논문에서 우리는 대규모 데이터를 다룰 때 훈련 속도를 빠르게 하기위해 순차적인 방법을 통해 쓸모없는 벡터들을 제거하기 위한 가능성을 논의하였다.

페이스북 마케팅 활용 방안에 대한 연구: 페이스북 '좋아요' 기능과 인구통계학적 정보 추출 (The Study of Facebook Marketing Application Method: Facebook 'Likes' Feature and Predicting Demographic Information)

  • 유성종;안세은;이준기
    • 한국빅데이터학회지
    • /
    • 제1권1호
    • /
    • pp.61-66
    • /
    • 2016
  • 최근 기업들이 빅데이터를 활용하여 효과적인 마케팅 전략을 전개함에 있어서, 고객의 세부정보를 기반으로 하는 개인화된 마케팅 전략을 활용하고 있다. 하지만 프라이버시 및 개인정보 유출위협이 커짐에 따라 소셜 네트워크 사이트(Social Network Site, 이하 SNS)에서 계정의 개인정보 항목을 삭제하거나 정보공개수준을 통제하는 경향이 높아지고 있다. 이로인해 기업의 마케팅 담당자들은 고객의 세부정보를 파악하는 것에 어려움을 겪고 있다. 본 연구에서는 SNS 중에서 가장 많은 회원 수를 보유하고 있는 Facebook에서 제한된 정보를 바탕으로 성별을 예측하는 분석방법론을 도출하고자 하였다. 본 연구에는 측정도구로 Gaussian RBF, nFactors, randomForest, 그리고 5-fold cross-validation 사용하였다. 그 결과, 성별은 75%, 연령대는 97.85%로 '좋아요' 정보만을 가지고 성별과 연령을 예측할 수 있었다. 즉, 사용자들의 어떠한 세부정보 없이, Facebook의 '좋아요'의 정보를 가지고 인구통계학적인 정보를 추론할 수 있었다. 본 연구의 결과를 바탕으로 개인정보 수집에 어려움을 겪고 있는 기업 및 마케팅 담당자들에게 유용한 가이드 라인을 제시 할 수 있을 것으로 기대한다.

  • PDF

지역난방 동절기 공동주택 온수급탕부하의 LS-SVM 기반 모델링 (LS-SVM Based Modeling of Winter Time Apartment Hot Water Supply Load in District Heating System)

  • 박영칠
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.355-360
    • /
    • 2016
  • Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.

FEM 시뮬레이션을 이용한 임펠러의 구조 안전성 평가 (The Evaluation of Structural Safety of Impeller Using FEM Simulation)

  • 정종윤
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.41-47
    • /
    • 2020
  • As modern industries are highly being developed, it is required that mechanical parts have to be manufactured with a high precision. In order to have precise parts, error-free designs have to be done before manufacturing with accuracy. For this intention being fulfilled, a mechanical analysis is essential for design proof. Nowadays, FEM simulation is a popular tool for verifying a machine design. In this paper, an impeller, being utilized in a compressor or an oil mixer as an actuator, is studied for an evaluation. The purpose of this study is to present a safety of an impeller for a proof of its mechanical stability. A static analysis for stress, strain, and deformation within a regular usage is examined. This simulation test shows 357.26×106 Pa for maximum equivalent stress and 0.207mm for total deformation. A fatigue test is carried to provide durability and its result shows that minimum safety factor is 3.2889, which guarantees that it runs without a fatigue failure in 106 cycles. The natural frequencies for the impeller is ranged from 228.09Hz to 1,253.6Hz for the 1st to the 6th mode. Total deformations at these natural frequencies are shown from 6.84mm to 12.631mm. Furthermore, Campbell diagram reveals that a critical speed is not found throughout regular rotational speeds. From the test results for the analysis, this paper concludes that the suggested impeller is proved for its mechanical safety and good to utilize at industries.

A Detailed Review on Recognition of Plant Disease Using Intelligent Image Retrieval Techniques

  • Gulbir Singh;Kuldeep Kumar Yogi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.77-90
    • /
    • 2023
  • Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.

A Deep Learning Approach for Covid-19 Detection in Chest X-Rays

  • Sk. Shalauddin Kabir;Syed Galib;Hazrat Ali;Fee Faysal Ahmed;Mohammad Farhad Bulbul
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.125-134
    • /
    • 2024
  • The novel coronavirus 2019 is called COVID-19 has outspread swiftly worldwide. An early diagnosis is more important to control its quick spread. Medical imaging mechanics, chest calculated tomography or chest X-ray, are playing a vital character in the identification and testing of COVID-19 in this present epidemic. Chest X-ray is cost effective method for Covid-19 detection however the manual process of x-ray analysis is time consuming given that the number of infected individuals keep growing rapidly. For this reason, it is very important to develop an automated COVID-19 detection process to control this pandemic. In this study, we address the task of automatic detection of Covid-19 by using a popular deep learning model namely the VGG19 model. We used 1300 healthy and 1300 confirmed COVID-19 chest X-ray images in this experiment. We performed three experiments by freezing different blocks and layers of VGG19 and finally, we used a machine learning classifier SVM for detecting COVID-19. In every experiment, we used a five-fold cross-validation method to train and validated the model and finally achieved 98.1% overall classification accuracy. Experimental results show that our proposed method using the deep learning-based VGG19 model can be used as a tool to aid radiologists and play a crucial role in the timely diagnosis of Covid-19.

랜덤포레스트를 이용한 모기업의 하향 거래처 기업의 분류: 자동차 부품산업의 가치사슬을 중심으로 (Classification of Parent Company's Downward Business Clients Using Random Forest: Focused on Value Chain at the Industry of Automobile Parts)

  • 김태진;홍정식;전윤수;박종률;안태욱
    • 한국전자거래학회지
    • /
    • 제23권1호
    • /
    • pp.1-22
    • /
    • 2018
  • 가치사슬은 경쟁우위 강화를 위한 전략적 도구로써 주로 기업수준, 산업수준에서 분석되어 왔다. 그런데 기업수준에서 가치사슬 분석을 수행하기 위해서는 분석 기업의 거래처 기업들이 그 기업의 가치 사슬에 속하는지의 여부에 따라 분류되어야 한다. 단일 기업에 대한 가치사슬 분류는 전문가들에 의해 원활히 수행될 수 있지만 다수의 기업을 대상으로 분류할 때는 많은 비용과 시간이 소요되는 등의 한계점이 따른다. 따라서 본 연구에서는 실거래 데이터를 기반으로 특정 기업의 거래처 기업들을 분류해서 가치사슬 기업을 자동적으로 도출해주는 모형을 제안하고자 한다. 총 19개의 거래 속성 변수를 실거래 데이터로부터 도출하여 기계학습의 입력 데이터의 형태로 가공하였고, 랜덤포레스트 알고리즘을 이용하여 가치사슬 분류 모형을 구축하였다. 자동차 부품 기업 사례에 본 연구 모형을 적용한 결과, 정확도 92%, F1-척도 76% 그리고 AUC 94%로 자동적 가치사슬 분류의 가능성을 확인하였다. 또한 거래집중도, 거래금액 그리고 거래처별 총 매출액 등과 같은 거래 속성들이 가치사슬에 속하는 기업들을 대표하는 주요 특성임을 확인하였다.

낭성 종양의 체액에 대한 생체내, 생체외 3T 양성자 자기공명분 광법과 양성자 핵자기공명기법의 비교: Preliminary Study (Comparison of in Vivo, in Vitro 3T MR Spectroscopy and Proton NMR Spectroscopy for the Fluid from Cystic Tumor: Preliminary Study)

  • 이희중;김종열;장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • 제12권2호
    • /
    • pp.107-114
    • /
    • 2008
  • 목적 : 3T MR 기기를 이용하여, 췌장 주위에 발생한 낭성 종양에 대하여, 생체내, 그리고 생체외 생체내 자기공명분광법(magnetic resonance spectroscopy: MRS)를 획득한 후, 생체외 핵자기공명 (nuclear magnetic resonance, NMR) 스펙트럼을 기준으로 비교함으로써, 낭성 종양의 감별 진단에 있어 MRS의 적용 가능성을 알아보고자 하였다. 대상 및 방법 : 췌장 주위에 발행한 12예의 낭성 종양(점액성 낭성 종양=5, 췌담관내 유두종=5, 가성 낭종=1, 및 림프관종 n=1)을 대상으로 3.0T 생체내, 생체외 양성자 MRS 및 9T NMR 스펙트럼을 획득하였다. NMR의 피크와 상응하는 생체내, 생체외 양성자 MRS에서 관찰되는 피크의 존재유무를 알아보았으며, 특정 질환을 예측하는 피크에 대하여 알아보았다. 결과 : 생체내 MRS는 NMR과 민감도 29.6%, 특이도 82.6% 그리고, 67.7%의 정확도를 보였으며 (p=0.096, McNemar test), 생체외 MRS는 생체내 MRS는 민감도 57.1%, 특이도 92.6%, 그리고, 82.3%의 정확도를 보였다 (p = 0.362, McNemar test). 질병간의 스펙트럼의 차이는 NMR에서 췌담관내 유두종의 경우에서 점액성 낭성 종양에 비해 3.5-4.0 ppm에서 유의하게 많은 피크를 보였다 (p=0.026). 결론 : 결론적으로, NMR 이용한 화학물질 분석은 낭성 종양의 감별 진단에 도움이 될 가능성이 있는 기법으로 생각되지만, 생체내 및 생체외 MRS는 임상에 적용되기 위해서는 많은 기술적 발전을 필요로 하는 것으로 생각된다.

  • PDF