• Title/Summary/Keyword: machine learning techniques

Search Result 1,117, Processing Time 0.023 seconds

A Study on a Wearable Smart Airbag Using Machine Learning Algorithm (머신러닝 알고리즘을 사용한 웨어러블 스마트 에어백에 관한 연구)

  • Kim, Hyun Sik;Baek, Won Cheol;Baek, Woon Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.94-99
    • /
    • 2020
  • Bikers can be subjected to injuries from unexpected accidents even if they wear basic helmets. A properly designed airbag can efficiently protect the critical areas of the human body. This study introduces a wearable smart airbag system using machine learning techniques to protect human neck and shoulders. When a bicycle accident happens, a microprocessor analyzes the biker's motion data to recognize if it is a critical accident by comparing with accident classification models. These models are trained by a variety of possible accidents through machine learning techniques, like k-means and SVM methods. When the microprocessor decides it is a critical accident, it issues an actuation signal for the gas inflater to inflate the airbag. A protype of the wearable smart airbag with the machine learning techniques is developed and its performance is tested using a human dummy mounted on a moving cart.

An improvement of LEM2 algorithm

  • The, Anh-Pham;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.302-304
    • /
    • 2011
  • Rule based machine learning techniques are very important in our real world now. We can list out some important application which we can apply rule based machine learning algorithm such as medical data mining, business transaction mining. The different between rules based machine learning and model based machine learning is that model based machine learning out put some models, which often are very difficult to understand by expert or human. But rule based techniques output are the rule sets which is in IF THEN format. For example IF blood pressure=90 and kidney problem=yes then take this drug. By this way, medical doctor can easy modify and update some usable rule. This is the scenario in medical decision support system. Currently, Rough set is one of the most famous theory which can be used for produce the rule. LEM2 is the algorithm use this theory and can produce the small set of rule on the database. In this paper, we present an improvement of LEM2 algorithm which incorporates the variable precision techniques.

Combining Machine Learning Techniques with Terrestrial Laser Scanning for Automatic Building Material Recognition

  • Yuan, Liang;Guo, Jingjing;Wang, Qian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.361-370
    • /
    • 2020
  • Automatic building material recognition has been a popular research interest over the past decade because it is useful for construction management and facility management. Currently, the extensively used methods for automatic material recognition are mainly based on 2D images. A terrestrial laser scanner (TLS) with a built-in camera can generate a set of coloured laser scan data that contains not only the visual features of building materials but also other attributes such as material reflectance and surface roughness. With more characteristics provided, laser scan data have the potential to improve the accuracy of building material recognition. Therefore, this research aims to develop a TLS-based building material recognition method by combining machine learning techniques. The developed method uses material reflectance, HSV colour values, and surface roughness as the features for material recognition. A database containing the laser scan data of common building materials was created and used for model training and validation with machine learning techniques. Different machine learning algorithms were compared, and the best algorithm showed an average recognition accuracy of 96.5%, which demonstrated the feasibility of the developed method.

  • PDF

Selection of Machine Learning Techniques for Network Lifetime Parameters and Synchronization Issues in Wireless Networks

  • Srilakshmi, Nimmagadda;Sangaiah, Arun Kumar
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.833-852
    • /
    • 2019
  • In real time applications, due to their effective cost and small size, wireless networks play an important role in receiving particular data and transmitting it to a base station for analysis, a process that can be easily deployed. Due to various internal and external factors, networks can change dynamically, which impacts the localisation of nodes, delays, routing mechanisms, geographical coverage, cross-layer design, the quality of links, fault detection, and quality of service, among others. Conventional methods were programmed, for static networks which made it difficult for networks to respond dynamically. Here, machine learning strategies can be applied for dynamic networks effecting self-learning and developing tools to react quickly and efficiently, with less human intervention and reprogramming. In this paper, we present a wireless networks survey based on different machine learning algorithms and network lifetime parameters, and include the advantages and drawbacks of such a system. Furthermore, we present learning algorithms and techniques for congestion, synchronisation, energy harvesting, and for scheduling mobile sinks. Finally, we present a statistical evaluation of the survey, the motive for choosing specific techniques to deal with wireless network problems, and a brief discussion on the challenges inherent in this area of research.

A Study on Prediction Techniques through Machine Learning of Real-time Solar Radiation in Jeju (제주 실시간 일사량의 기계학습 예측 기법 연구)

  • Lee, Young-Mi;Bae, Joo-Hyun;Park, Jeong-keun
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.521-527
    • /
    • 2017
  • Solar radiation forecasts are important for predicting the amount of ice on road and the potential solar energy. In an attempt to improve solar radiation predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, support vector machines and logistic regression. To validate machine learning models, the results from the simulation was compared with the solar radiation data observed over Jeju observation site. According to the model assesment, it can be seen that the solar radiation prediction using random forest is the most effective method. The error rate proposed by random forest data mining is 17%.

A Novel Thresholding for Prediction Analytics with Machine Learning Techniques

  • Shakir, Khan;Reemiah Muneer, Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • Machine-learning techniques are discovering effective performance on data analytics. Classification and regression are supported for prediction on different kinds of data. There are various breeds of classification techniques are using based on nature of data. Threshold determination is essential to making better model for unlabelled data. In this paper, threshold value applied as range, based on min-max normalization technique for creating labels and multiclass classification performed on rainfall data. Binary classification is applied on autism data and classification techniques applied on child abuse data. Performance of each technique analysed with the evaluation metrics.

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

Price Determinant Factors of Artworks and Prediction Model Based on Machine Learning (작품 가격 추정을 위한 기계 학습 기법의 응용 및 가격 결정 요인 분석)

  • Jang, Dongryul;Park, Minjae
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.687-700
    • /
    • 2019
  • Purpose: The purpose of this study is to investigate the interaction effects between price determinants of artworks. We expand the methodology in art market by applying machine learning techniques to estimate the price of artworks and compare linear regression and machine learning in terms of prediction accuracy. Methods: Moderated regression analysis was performed to verify the interaction effects of artistic characteristics on price. The moderating effects were studied by confirming the significance level of the interaction terms of the derived regression equation. In order to derive price estimation model, we use multiple linear regression analysis, which is a parametric statistical technique, and k-nearest neighbor (kNN) regression, which is a nonparametric statistical technique in machine learning methods. Results: Mostly, the influences of the price determinants of art are different according to the auction types and the artist 's reputation. However, the auction type did not control the influence of the genre of the work on the price. As a result of the analysis, the kNN regression was superior to the linear regression analysis based on the prediction accuracy. Conclusion: It provides a theoretical basis for the complexity that exists between pricing determinant factors of artworks. In addition, the nonparametric models and machine learning techniques as well as existing parameter models are implemented to estimate the artworks' price.

Role of Machine Learning in Intrusion Detection System: A Systematic Review

  • Alhasani, Areej;Al omrani, Faten;Alzahrani, Taghreed;alFahhad, Rehab;Alotaibi, Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.155-162
    • /
    • 2022
  • Over the last 10 years, there has been rapid growth in the use of Machine Learning (ML) techniques to automate the process of intrusion threat detection at a scale never imagined before. This has prompted researchers, software engineers, and network specialists to rethink the applications of machine ML techniques particularly in the area of cybersecurity. As a result there exists numerous research documentations on the use ML techniques to detect and block cyber-attacks. This article is a systematic review involving the identification of published scholarly articles as found on IEEE Explore and Scopus databases. The articles exclusively related to the use of machine learning in Intrusion Detection Systems (IDS). Methods, concepts, results, and conclusions as found in the texts are analyzed. A description on the process taken in the identification of the research articles included: First, an introduction to the topic which is followed by a methodology section. A table is used to list identified research articles in the form of title, authors, methodology, and key findings.

Income prediction of apple and pear farmers in Chungnam area by automatic machine learning with H2O.AI

  • Hyundong, Jang;Sounghun, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.619-627
    • /
    • 2022
  • In Korea, apples and pears are among the most important agricultural products to farmers who seek to earn money as income. Generally, farmers make decisions at various stages to maximize their income but they do not always know exactly which option will be the best one. Many previous studies were conducted to solve this problem by predicting farmers' income structure, but researchers are still exploring better approaches. Currently, machine learning technology is gaining attention as one of the new approaches for farmers' income prediction. The machine learning technique is a methodology using an algorithm that can learn independently through data. As the level of computer science develops, the performance of machine learning techniques is also improving. The purpose of this study is to predict the income structure of apples and pears using the automatic machine learning solution H2O.AI and to present some implications for apple and pear farmers. The automatic machine learning solution H2O.AI can save time and effort compared to the conventional machine learning techniques such as scikit-learn, because it works automatically to find the best solution. As a result of this research, the following findings are obtained. First, apple farmers should increase their gross income to maximize their income, instead of reducing the cost of growing apples. In particular, apple farmers mainly have to increase production in order to obtain more gross income. As a second-best option, apple farmers should decrease labor and other costs. Second, pear farmers also should increase their gross income to maximize their income but they have to increase the price of pears rather than increasing the production of pears. As a second-best option, pear farmers can decrease labor and other costs.