• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.025 seconds

Unveiling the Unseen: A Review on current trends in Open-World Object Detection (오픈 월드 객체 감지의 현재 트렌드에 대한 리뷰)

  • MUHAMMAD ALI IQBAL;Soo Kyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.335-337
    • /
    • 2024
  • This paper presents a new open-world object detection method emphasizing uncertainty representation in machine learning models. The focus is on adapting to real-world uncertainties, incrementally updating the model's knowledge repository for dynamic scenarios. Applications like autonomous vehicles benefit from improved multi-class classification accuracy. The paper reviews challenges in existing methodologies, stressing the need for universal detectors capable of handling unknown classes. Future directions propose collaboration, integration of language models, to improve the adaptability and applicability of open-world object detection.

  • PDF

Criteria for implementing artificial intelligence systems in reproductive medicine

  • Enric Guell
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • This review article discusses the integration of artificial intelligence (AI) in assisted reproductive technology and provides key concepts to consider when introducing AI systems into reproductive medicine practices. The article highlights the various applications of AI in reproductive medicine and discusses whether to use commercial or in-house AI systems. This review also provides criteria for implementing new AI systems in the laboratory and discusses the factors that should be considered when introducing AI in the laboratory, including the user interface, scalability, training, support, follow-up, cost, ethics, and data quality. The article emphasises the importance of ethical considerations, data quality, and continuous algorithm updates to ensure the accuracy and safety of AI systems.

Comparison of Region-based CNN Methods for Defects Detection on Metal Surface (금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교)

  • Lee, Minki;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

Fault Diagnosis of Rotating Machinery Based on Multi-Class Support Vector Machines

  • Yang Bo-Suk;Han Tian;Hwang Won-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.846-859
    • /
    • 2005
  • Support vector machines (SVMs) have become one of the most popular approaches to learning from examples and have many potential applications in science and engineering. However, their applications in fault diagnosis of rotating machinery are rather limited. Most of the published papers focus on some special fault diagnoses. This study covers the overall diagnosis procedures on most of the faults experienced in rotating machinery and examines the performance of different SVMs strategies. The excellent characteristics of SVMs are demonstrated by comparing the results obtained by artificial neural networks (ANNs) using vibration signals of a fault simulator.

Comparison of Feature Selection Processes for Image Retrieval Applications

  • Choi, Young-Mee;Choo, Moon-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1544-1548
    • /
    • 2011
  • A process of choosing a subset of original features, so called feature selection, is considered as a crucial preprocessing step to image processing applications. There are already large pools of techniques developed for machine learning and data mining fields. In this paper, basically two methods, non-feature selection and feature selection, are investigated to compare their predictive effectiveness of classification. Color co-occurrence feature is used for defining image features. Standard Sequential Forward Selection algorithm are used for feature selection to identify relevant features and redundancy among relevant features. Four color spaces, RGB, YCbCr, HSV, and Gaussian space are considered for computing color co-occurrence features. Gray-level image feature is also considered for the performance comparison reasons. The experimental results are presented.

Music Key Identification using Chroma Features and Hidden Markov Models

  • Kanyange, Pamela;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1502-1508
    • /
    • 2017
  • A musical key is a fundamental concept in Western music theory. It is a collective characterization of pitches and chords that together create a musical perception of the entire piece. It is based on a group of pitches in a scale with which a music is constructed. Each key specifies the set of seven primary chromatic notes that are used out of the twelve possible notes. This paper presents a method that identifies the key of a song using Hidden Markov Models given a sequence of chroma features. Given an input song, a sequence of chroma features are computed. It is then classified into one of the 24 keys using a discrete Hidden Markov Models. The proposed method can help musicians and disc-jockeys in mixing a segment of tracks to create a medley. When tested on 120 songs, the success rate of the music key identification reached around 87.5%.

Adaptive Resource Management and Provisioning in the Cloud Computing: A Survey of Definitions, Standards and Research Roadmaps

  • Keshavarzi, Amin;Haghighat, Abolfazl Toroghi;Bohlouli, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4280-4300
    • /
    • 2017
  • The fact that cloud computing services have been proposed in recent years, organizations and individuals face with various challenges and problems such as how to migrate applications and software platforms into cloud or how to ensure security of migrated applications. This study reviews the current challenges and open issues in cloud computing, with the focus on autonomic resource management especially in federated clouds. In addition, this study provides recommendations and research roadmaps for scientific activities, as well as potential improvements in federated cloud computing. This survey study covers results achieved through 190 literatures including books, journal and conference papers, industrial reports, forums, and project reports. A solution is proposed for autonomic resource management in the federated clouds, using machine learning and statistical analysis in order to provide better and efficient resource management.

Applications of python package for statistical engineering (통계공학을 위한 Python 패키지 응용)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.633-658
    • /
    • 2021
  • Statistical engineering contains design of experiments, quality control/ management, and reliability engineering. Python is a free software environment for machine learning, data science, and graphics. Python package has many functions and libraries for statistical engineering. We can use Python package as a useful tool for statistical engineering. This paper shows applications of Python package for statistical engineering and suggests a total Python projects for statistical engineering.

User Review Mining: An Approach for Software Requirements Evolution

  • Lee, Jee Young
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.124-131
    • /
    • 2020
  • As users of internet-based software applications increase, functional and non-functional problems for software applications are quickly exposed to user reviews. These user reviews are an important source of information for software improvement. User review mining has become an important topic of intelligent software engineering. This study proposes a user review mining method for software improvement. User review data collected by crawling on the app review page is analyzed to check user satisfaction. It analyzes the sentiment of positive and negative that users feel with a machine learning method. And it analyzes user requirement issues through topic analysis based on structural topic modeling. The user review mining process proposed in this study conducted a case study with the a non-face-to-face video conferencing app. Software improvement through user review mining contributes to the user lock-in effect and extending the life cycle of the software. The results of this study will contribute to providing insight on improvement not only for developers, but also for service operators and marketing.

REVIEW OF DIFFUSION MODELS: THEORY AND APPLICATIONS

  • HYUNGJIN CHUNG;HYELIN NAM;JONG CHUL YE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.1
    • /
    • pp.1-21
    • /
    • 2024
  • This review comprehensively explores the evolution, theoretical underpinnings, variations, and applications of diffusion models. Originating as a generative framework, diffusion models have rapidly ascended to the forefront of machine learning research, owing to their exceptional capability, stability, and versatility. We dissect the core principles driving diffusion processes, elucidating their mathematical foundations and the mechanisms by which they iteratively refine noise into structured data. We highlight pivotal advancements and the integration of auxiliary techniques that have significantly enhanced their efficiency and stability. Variants such as bridges that broaden the applicability of diffusion models to wider domains are introduced. We put special emphasis on the ability of diffusion models as a crucial foundation model, with modalities ranging from image, 3D assets, and video. The role of diffusion models as a general foundation model leads to its versatility in many of the downstream tasks such as solving inverse problems and image editing. Through this review, we aim to provide a thorough and accessible compendium for both newcomers and seasoned researchers in the field.