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ABSTRACT. This review comprehensively explores the evolution, theoretical underpinnings,
variations, and applications of diffusion models. Originating as a generative framework, diffusion
models have rapidly ascended to the forefront of machine learning research, owing to their
exceptional capability, stability, and versatility. We dissect the core principles driving diffusion
processes, elucidating their mathematical foundations and the mechanisms by which they
iteratively refine noise into structured data. We highlight pivotal advancements and the integration
of auxiliary techniques that have significantly enhanced their efficiency and stability. Variants
such as bridges that broaden the applicability of diffusion models to wider domains are introduced.
We put special emphasis on the ability of diffusion models as a crucial foundation model, with
modalities ranging from image, 3D assets, and video. The role of diffusion models as a general
foundation model leads to its versatility in many of the downstream tasks such as solving inverse
problems and image editing. Through this review, we aim to provide a thorough and accessible
compendium for both newcomers and seasoned researchers in the field.

1. INTRODUCTION

Deep generative models [1, 2, 3, 4, 5, 6, 7] have recently undergone a transformative journey,
emerging as pivotal tools for modeling the prior distribution of data explicitly or implicitly
through a parametrized neural network, pdata ≈ pθ(x). Among these generative models,
diffusion models [5, 6, 7] have ascended to prominence, heralded for their exceptional capability
to generate high-fidelity samples without mode collapse or adversarial training as in generative
adversarial networks [1]. This paper embarks on a comprehensive review of diffusion models,
delineating their theoretical foundations and recent applications.

Diffusion models generate data by reversing the forward Gaussian noising trajectory, which
can be described by a forward stochastic differential equation (SDE). The reverse generative
process is thus a process that generates data starting from pure Gaussian noise, akin to most
other types of generative models, such as GAN [1], VAE [2], and Normalizing Flows [4].
One of the key differences of diffusion models against other generative models is that the
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generative trajectory is predetermined as a denoising trajectory, governed by the Stein score
function [8], parametrized through a neural network ∇x log pt(x) ≈ sθ(x, t). To sample data
from noise, one solves a differential equation (DE) numerically by iteratively querying the score
function across the reverse time horizon. The process of iterative refinement, achieved through a
parameter-shared neural network, enables stable and high-fidelity sampling as opposed to other
one-step generative models, radically mitigating the limited expressivity of the parametrized
neural networks.

Due to these advantages, diffusion models have risen as the de facto standard of generative
models, especially in the vision community, where the applications span across image [9, 10, 11],
3D [12, 13], video [14, 15, 16], and even 4D [17]. Currently, diffusion models are to vision
what autoregressive language models are to language: it is a local minimum so good that it
almost seems hard to escape without a significant momentum in the whole research community.
They are exceptionally robust and scalable, allowing them to be leveraged as vision foundation
models, that can be used as a fully general prior that can be easily fine-tuned or leveraged as a
plug-and-play module for downstream applications such as editing or inverse problem-solving.

This review aims to navigate the intricate landscape of diffusion models, offering insights
into their theoretical mechanics, developmental milestones, and the cutting-edge applications
that illustrate their transformative potential. The remainder of this paper is organized as follows:
Sec. 2 delves into the theoretical underpinnings of diffusion models, elucidating the principles
and processes that define their operation. Sec. 3 discusses various diffusion trajectories that can
be modeled other than the standard Gaussian diffusion in the original signal space. Sec. 4 is
devoted to different sampling methods that diffusion models can take, ranging from standard
DE solvers to various distillation techniques. Sec. 5 summarize the emerging applications in the
field, focusing on text-to-x foundation models and inverse problem solving. We conclude the
review with future perspectives and its societal impact in Sec. 6.

2. THEORY

2.1. Score perspective. Consider the following continuous diffusion process x(t), t ∈ [0, T ]
with x(t) ∈ Rd [5]. We set x(0) ∼ p0(x), where p0 = pdata as our initial data distribution, and
x(T ) ∼ pT , where pT is a reference distribution that we can sample from. The forward noising
process from t = 0 → T can be defined by the following Itô stochastic differential equation:

dx = f(x, t)dt+ g(t)dw, f : Rd × R 7→ Rd, g : R 7→ R, (2.1)

where f is the drift function of x(t), g is the diffusion coefficient coupled with the standard
d-dimensional Brownian motion w ∈ Rd. By properly choosing f , g, one can asymptotically
approach the Gaussian distribution as t → T . When the drift function f is taken to be an
affine function of x, i.e. f(x, t) = f(t)x, then the perturbation kernel p(x(t)|x(0)) is always
Gaussian, where the parameters can be calculated in closed-form. Hence, perturbing the data
with the perturbation kernel p(x(t)|x(0)) can be done without running the forward SDE. Owing
to this property, one never gradually adds noise to data when training a diffusion model.
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For given forward SDE in Eq. (2.1), it can be shown that there exists a reverse-time SDE
running backwards [5, 18, 19]:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄ (2.2)

where dt is the infinitesimal negative time step, and w̄ is the standard Brownian motion running
backwards. Running the reverse diffusion in Eq. (2.2) by sampling a random gaussian noise
as an initial value would lead to sampling from p0(x). In order to do so, it is clear that we
need access to the time-conditional score function ∇x log pt(x), which corresponds to the score
function of the smoothed data distribution that is convolved with a Gaussian kernel.

An interesting fact is that there exists a corresponding deterministic ODE to Eq. (2.2), which
reads

dx = [f(x, t)− g(t)2∇x log pt(x)︸ ︷︷ ︸
=:f̃θ(x,t)

]dt. (2.3)

The ODE in Eq. (2.3) is called probability-flow ODE (PF-ODE). While Eq. (2.2) and Eq. (2.3)
recover the same law pt(x), PF-ODE has several intriguing properties. First, diffusion models
can now be seen as a type of continuous normalizing flows (CNF) [3], by considering the
network as f̃θ, leading to tractable likelihood computation. Second, ODE solvers are typically
more well-behaved compared to SDE solvers. As will be discussed in further detail in Sec. 4.1,
solving the PF-ODE instead of the reverse SDE leads to faster sampling.

One can train a neural network to approximate the actual score function via a procedure
called score matching [20, 5] to estimate sθ(x, t) ≈ ∇x log pt(x), and plug it into Eq. (2.2).
However, it is known that using explicit or implicit score matching is hardly scalable due to the
instability and the compute requirements [20]. To circumvent technical difficulties, denoising
score matching (DSM) is used

θ∗ = argmin
θ

Et∼Unif(0,T ),xt∼p(xt|x0),x0∼p(x0)

[
∥sθ(xt, t)−∇xt log p(xt|x0)∥22

]
. (2.4)

It should be noted that DSM, as the name implies, is equivalent to training a denoising au-
toencoder (DAE) on multiple noise levels, determined by an additional input t. Concretely,
consider the simplest forward perturbation kernel p(xt|x0) = N (xt;x0, t

2I)1. Then, by setting
a denoiser parametrization Dθ(xt, t) ≜ −sθ(xt, t)/t

2, it is easy to see that Eq. (2.4) can be
rewritten as

θ∗ = argmin
θ

Et∼Unif(0,T ),xt∼p(xt|x0),x0∼p(x0)

[
t∥Dθ(xt, t)− x0∥22

]
. (2.5)

The equivalence between Eq. (2.4) and Eq. (2.5) is also related to Tweedie’s theorem [21, 22]

Theorem 1 (Tweedie’s theorem). Given a perturbation kernel p(xt|x0) = N (xt;x0, t
2I), the

posterior mean is given as

E[x0|xt] = xt + t2∇xt log p(xt)

1This choice is called the variance exploding (VE) diffusion, as the signal is kept the same throughout the diffusion
process, but buried under exploding noise.
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In other words, the parametrization in Eq. (2.5) is a way of directly estimating the posterior
mean E[x0|xt]. Regardless of the parametrization and thanks to 1, diffusion models can be seen
as having two dual representations: the noisy variable xt that evolves with the reverse SDE in
Eq. (2.2), and the posterior mean E[x0|xt], which is implicitly given by the Tweedie’s theorem,
and can be thought of as the end point of the trajectory when taking a tangent direction to the
current step.

2.2. Variational perspective. Parallel to the development of the score-based perspective on
diffusion models, a variational perspective was also developed [6, 7], which now links diffusion
models to VAEs [2]. Specifically, under this perspective, diffusion models are a hierarchical
latent variable model called denoising diffusion probabilistic models (DDPM)

pθ(x0) =

∫
pθ(xT )

T∏
t=1

p
(t)
θ (xt−1|xt) dx1:T ,

where x{1,...,T} ∈ Rd. The neural network that models pθ is then trained by minimizing the
evidence lower bound (ELBO)

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Eq

− log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)


(2.6)

where the inference distribution q is defined by the Markovian forward conditional densities

q(xt|xt−1) = N (xt|
√

βtxt−1, (1− βt)I), (2.7)

q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I).

Here, the noise schedule βt is a strictly monotonically increasing sequence of t, with ᾱt :=∏t
i=1 αt, αt := 1 − βt. The noise schedule is chosen such that the signal coefficient

√
ᾱt

is sufficiently close to 0 as t → T , which in turn ensures that the noise coefficient 1 − ᾱt

is sufficiently close to 1, approaching the standard normal distribution. Unlike the choice of
VE diffusion discussed in Sec. 2.1, the choice made here is called variance preserving (VP).
Interestingly, the discrete VP setup in Eq. (2.7), when pushed to the continuous counterpart by
setting the number of discretization steps to N → ∞, leads to the following SDE

dx = −1

2
βtx dt+

√
βtdw. (2.8)

Minimizing the ELBO objective in Eq. (2.6) essentially leads to the following optimization
problem

min
θ

Eq

[∑
t>1

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))

]
. (2.9)
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The KL minimization problem in Eq. (2.9) is tractable as both distributions are Gaussians. For
the first term, this comes from Bayes rule and the Markov property

q(xt−1|xt,x0) = q(xt|xt−1,x0)
q(xt−1|x0)

q(xt|x0)
= N (xt−1; µ̃t(xt,x0), β̃tI),

where µ̃t(xt,x0) :=

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, β̃t :=

1− ᾱt−1

1− ᾱt
βt.

For the second term, the reverse distribution is Gaussian as we are considering small perturba-
tions for a single step of forward diffusion [7]. A typical parametrization is to set

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), β̃I),

where µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
.

Under this choice, the ELBO objective in Eq. (2.6) can be simplified to the epsilon-matching
objective by ignoring the time-dependent weighting factors

θ∗ = argmin
θ

Ext∼q(xt|x0),x0∼pdata(x0),ϵ∼N (0,I)

[
∥ϵθ(xt, t)− ϵ∥22

]
. (2.10)

Epsilon matching is equivalent to DSM/DAE objective up to a constant with different parametriza-
tion. Specifically, in the VP-case, ϵθ(xt, t) = −

√
1− ᾱtsθ(xt, t). Given the equivalence of the

forward noising distribution in Eq. (2.8) and the learning objective in Eq. (2.4),Eq. (2.10), it can
be seen that the two perspectives essentially lead to the same model.

Inference can be done by plugging in the trained ϵθ to estimate the mean of pθ(xt−1|xt),
leading to the following iteration

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ β̃tϵ, ϵ ∼ N (0, I).

Notice that similar to the reverse SDE in Eq. (2.2), we add stochastic noise in every iteration
during DDPM sampling, leading to slower inference. A canonical way to avoid this, similar to
the transition to the PF-ODE, can be done by denoising diffusion implicit models (DDIM) [5],
where another inference distribution is introduced

qη(xt−1|xt,x0) = N (xt−1;
√
ᾱt−1x0 +

√
1− ᾱt−1 − ηβ̃2

t

xt −
√
ᾱtx0√

1− ᾱt
, ηβ̃2

t I),

where η ∈ [0, 1]. By setting η = 1.0, we recover the original DDPM sampling with maximal
stochasticity. By setting η = 0.0, we achieve a deterministic sampler, which can be shown to be
equivalent to the VE PF-ODE [5]. Using smaller values of η leads to better results when the
aim is to reduce the number of function evaluations (NFE).

3. DIFFUSION TRAJECTORIES

3.1. Latent Diffusion. Diffusion models are compute-heavy. This is not only because diffusion
models require sequentially querying diffusion models to numerically solve the generative
SDE/ODE, but also because the latent xt has the same dimension as the original signal x0.
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This makes directly scaling diffusion models to high-dimensional signals hard, requiring special
treatments to achieve decent results [23, 24]. Also, this is different from most other generative
models, where the dimensionality of the latent is much smaller than the signal. This can be
especially troubling when one considers the manifold hypothesis, which states that the manifold
in which the signal resides, is a low-dimensional space. To mitigate these drawbacks, diffusion
models in the latent space were proposed [25, 11].

The construction of the diffusion trajectory is identical to the diffusion in the pixel space,
as introduced in Sec. 2. There are mainly two choices for constructing the latent diffusion:
LSGM [25] proposes an end-to-end training of both the VAE and the diffusion part by posing
the whole model as a hierarchical VAE, which is possible as the diffusion model themselves can
be seen as a hierarchical variational VAE. Later, a simpler approach, known as LDM [11] was
proposed, delineating the training into two stages. In the first stage of training LDMs, only the
VAE is trained to compress the signal into a compact representation z ∈ Rk with k < d

x = Dφ(z), where z = Eϕ(x) := Eµ
ϕ (x) + Eσ

ϕ (x)⊙ ϵ, ϵ ∼ N (0, I),

where Eϕ is the encoder, and Dφ is the decoder. In the second stage, using a pre-trained encoder
of the VAE, the diffusion model is trained. In LDMs, a conditioning scheme was also introduced,
where the network takes in another input c through cross attention [26], leading to the following
training scheme

min
θ

Ezt∼p(zt|z0),z0∼p(E(x0)),(x0,c)∼p(x0,c)ϵ∼N (0,I)

[
∥ϵθ(zt, t; c)− ϵ∥22

]
. (3.1)

Setting c to be the text embedding of the pre-trained CLIP [27] encoder, a text-to-image (T2I)
diffusion model was constructed. Later, scaling the compute and data led to the popular stable
diffusion (SD) [11, 28, 29].

Thanks to its ability to model high-resolution data efficiently, latent diffusion has become
the standard of modern foundation models [29, 30, 31]. There exists another approach called
cascaded diffusion [32, 10], which also enables high-resolution signal synthesis. Cascaded
diffusion models work by training a low-resolution pixel diffusion as the first stage, then training
several conditional super-resolution diffusion models for scaling the resolution up. While such a
choice was equally popular in the early days, ranging from image [32, 10] to video [14, 33], the
popularity has ceased, as it requires multiple model training as well as using multiple models at
inference time.

3.2. Diffusion Bridges and Other Formulations.

3.2.1. General corruptions. Up until now, we mostly discussed standard Gaussian noising
diffusion, where the terminal reference distribution becomes an isotropic normal distribution. In
this section, we revisit the design choices made in standard diffusion models and explore what
other choices can be made to construct different generative processes. Several other choices can
be made by selecting different perturbation kernels. One popular other than Gaussian noise was
to choose the forward process to be a linear corruption + noise [34, 35], where the corruption
can be blurring, masking, etc. that gradually leads to the terminal distribution. Going further, the
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noise component from the corruption process can also be taken away, leading to a deterministic
corruption [36, 37].

3.2.2. Direct bridges. Diffusion models are constructed by building a specific path between the
data distribution and the Gaussian distribution. This formulation suffices for generative modeling,
as all we need is a reference distribution that can be easily sampled from. However, in many
scientific applications, we consider transfer tasks, where we have two different distributions,
either we have a coupling or not, and we wish to build a bridge between these two distributions
π0 and π1.

Let us start with the easier case when we have matching pairs (x0,x1), x0 ∼ π0, x1 ∼ π1.
To build a bridge in such case, various formulations that lead to very similar algorithms have been
proposed: flow matching (FM) [38, 39], rectified flow (RF) [40], stochastic interpolants [41],
etc. In these frameworks, a vector field is parametrized by a neural network vθ : Rd 7→ Rd,
which gradually transforms π0 to π1 as t = 0 → 1 through an ODE

dxt = vθt (xt, t) dt

Interestingly, the training of vθ can be done through a simple regression [40, 38]

min
θ

Et∼Unif(0,1),(x0,x1)∼(π0,π1)

[
∥(x1 − x0)− vθt (xt)∥2

]
where xt = tx1 + (1− t)x0

Once the network is trained, one can simply solve the ODE defined by the vector field vθ. In
RF [40], it was further shown that one can achieve straighter paths by applying the reflow
procedure, which corresponds to iteratively training a new RF model starting from the coupling
achieved by the previous masdfodel. Interestingly, this was shown to scale even for unpaired
tasks where we do not have explicit coupling. In the context of image restoration with paired
data, several works proposed similar methods that enable gradual restoration from the degraded
image [42, 43, 44], which were later shown to be equivalent [45] under the name direct diffusion
bridges, where one can further improve restoration quality by imposing data consistency steps.

3.2.3. Schrödinger bridge (SB). The hardest case, but an important one, considers a mapping
between π0 and π1 when we have unpaired samples from each distribution. To tackle this hard
problem, Schrödinger bridge (SB) [46, 47, 48, 49] was introduced, which is a dynamic version
of the entropy-regularized optimal transport (OT) [50] problem.

In essence, modern SB methods are linked to diffusion models by learning two nonlinear
SDEs, where to run the respective SDEs, one needs to train two different diffusion models
that are responsible for propagation. While these methods are versatile and can be applied to
hard tasks that standard diffusion models cannot handle, such as image translation [51, 52] and
atmospheric downscaling [53], these methods are hard to train robustly, and typically takes
much longer to converge.
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4. SAMPLING

4.1. Solving Differential Equations. As studied in Sec. 2, sampling from diffusion models
involves solving the SDE or the ODE, which naturally requires multiple NFE with fine discretiza-
tion to solve the DEs without introducing large discretization errors. For instance, DDPM [7]
requires 1000 NFE, and score-SDE [5] requires 4000 NFE to achieve the best performance.
Accelerating SDE solving through introducing more advanced solvers [54, 5] than a simple
Euler-Maruyama discretization was explored, but with a small gain.

Later, significant attention has shifted towards ODE solving, leading to accelerated sampling
that requires only 10∼50 sampling steps to achieve similar sample quality [55, 56, 57, 58, 59].
It was shown that higher-order solvers, such as Heun’s 2nd order method [58] and exponential
integrators [56, 59] were shown to balance well the trade-off between computation and accuracy.
Orthogonal to these advances, some methods aim to directly predict higher-order score functions
to also estimate the curvature of the trajectory [60, 61]. The higher-order information can also
be emulated by aggregating information from multiple steps during sampling, known as the
multi-step method [57].

4.2. Guided Sampling. As the momentum towards large vision foundation models grow, where
a diffusion model is trained on an extremely large corpus of data (e.g. LAION-5B [62]) it is
often inconvenient and ineffective to simply train an unconditional model without conditioning.
For instance, it is known that the sample quality greatly improves by limiting the possible modes
by class-conditioning [63, 9]. In the modern era, the standard is to use text conditioning, which
acts as a natural interface of the users, while being much more versatile and expressive than
using class conditioning. In conditional diffusion models, the goal is to model the conditional
distribution p(x|c), which involves predicting the conditional score function ∇x log p(x|c).
Although vanilla guidance is straightforward by additionally taking in as input c for the diffusion
model, a conditional diffusion model trained in this manner often learns to disregard or minimize
the provided conditioning information.

To achieve effective and adjustable conditioning strength, Classifier guidance [9] utilizes a
trained classifier to guide the reverse process towards a targeted mode of distribution.

∇xt log p(xt|c) = ∇xt log p(xt) +∇xt log p(c|xt) (4.1)

≈ sθ(xt, t) + ω∇xtfϕ(c|xt),

where fϕ is the classifier trained to estimate the log probability of the class label that the
noisy input xt belongs, and ω controls the emphasis on the conditioning, trading off diversity
against quality. Notably, in this case, we cannot simply take an off-the-shelf classifier, as it is
only trained on clean images without noise. Consequently, one notable limitation of classifier
guidance is its dependence on a separately trained classifier. Moreover, it is known that using
the gradients of the classifier may lead to adversarial gradients that push the results toward
undesirable outcomes [64].
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Classifier-Free Guidance (CFG)[65] addresses this issue by using only the diffusion model
inference. Rewriting Bayes rule in Eq. (4.1), we have

∇xt log p(c|xt) = ∇xt log p(xt|c)−∇xt log p(xt)

≈ sθ(xt, t; c)− sθ(xt, t).

Clearly, we can see that we can compute the gradient of the log-likelihood as in classifier
guidance without any classifier if we have access to the conditional score function sθ(xt, t; c).
When training a diffusion model, this can be easily implemented as in Eq. (3.1) by dropping
c for certain probabilities to also be able to use the unconditional score sθ(xt, t). Similar to
classifier guidance, we can choose a hyperparameter ω > 0 to control the guidance scale:

∇xt log p(xt|c) ≈ sθ(xt, t; c) + ω(sθ(xt, t; c)− sθ(xt, t)).

When using guided sampling with ω-sharpening, we end up sampling from p(xt)p(c|xt)
ω,

which is only the true posterior when ω = 1. When ω = 0, CFG reduces to unconditional
sampling. In practice, in order to achieve high-quality samples, one typically sets high CFG
guidance scale e.g. ω = 7.5. While CFG excels at generating remarkable images aligned with
the input text condition, even minor text alterations can yield entirely different outputs. Semantic
Guidance [66] focused on disentangling semantic directions inherent to the model, enabling
subtle control throughout the generation. On the other hand, Honget al.[67] use by-products of
the generation process like attention maps for guidance instead of external conditions.

4.3. Diffusion Distillation.

4.3.1. Sampling acceleration. The methods belonging to this category let us integrate longer
paths of the PF-ODE trajectory whereas diffusion models are only capable of producing the
tangent direction of the curved trajectory.

Diffusion models are inherently slow to sample from. The first work that belongs to the first
category was proposed by Luhman and Luhman [68]

min
ϕ

∥Gϕ(xT )− xθ
0∥, xθ

0 =

∫ 0

T
PFODE(xT ; θ,xs) ds, xT ∼ N (0, I),

where Gϕ is a new generative model that maps the noise xT to x0 in one-step, and xθ
0 is

the target sample generated from the pre-trained diffusion model by deterministic sampling
through the PF-ODE trajectory initialized with xT . While this method was shown to be feasible,
sampling xθ

0 to train a new ϕ is very compute-heavy. Later, it was shown that we can dissect this
process into iterative distillation, where the student network learns the 2-step DDIM sampling
process of the teacher network, known as progressive distillation [69]. While faster than [68],
this has the downside of requiring training a new model whenever aiming for reducing the NFE
by a factor of 2, each time introducing new errors.

Consistency Model (CM) is a popular distillation choice that aims to tackle these drawbacks,
by designing a network Gϕ : Rd × R 7→ Rd, which can take any xt, t ∈ [0, 1] and map it
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directory to t = 0 in a single step. The training proceeds by

min
ϕ

E [∥Gϕ(xt−∆t, t−∆t)−Gϕ(xt, t)∥] , xt−∆t =

∫ t−∆t

t
PFODE(xt; θ,xs) ds.

Optimized over all horizon, Gϕ learns to map any xt along the trajectory to x0 regardless of t.
One downside of CM is that it lacks a way to trade off quality for speed. Consistency Trajectory
Model (CTM) [70] proposes a generalization of CM and diffusion models, by designing the
student network Gϕ to take in two time conditions: the starting point of the integral, and the
ending point of the integral. When these two points are the same, the network boils down to
the original diffusion model. When the ending point is set to 0, CTM acts like a CM. Similar
ideas with different design choices on how to distill the PF-ODE trajectory were independently
proposed in TRACT [71], BOOT [72], etc. Perhaps not surprisingly, the same ideas were soon
applied to LDMs [73, 74, 75].

4.3.2. Score distillation sampling. The methods that belong to this category started from a
method called score distillation sampling (SDS) [12], where the goal is not to distill the reverse
diffusion trajectory but to use the diffusion model as a testing function, analogous to the role
of discriminators in GAN [1]. This is natural, as the use of denoisers as a testing function, or
similarly a regularizer that pushes it towards the image manifold has been studied extensively in
the past literature (e.g. RED [76], Plug-and-play prior [77]).

Consider a differentiable, parameterized function that can generate an image as an output
x = g(ϕ). SDS provides a way to train the parameters of ϕ to generate plausible xs under the
diffusion prior. The straightforward loss reads

∇ϕLDiff (θ,x = g(ϕ)) = Et,ϵ

(ϵθ (xt; c, t)− ϵ)︸ ︷︷ ︸
Noise Residual

∂ϵθ (xt; c, t)

xt︸ ︷︷ ︸
U-Net Jacobian

∂x

∂ϕ︸︷︷︸
Generator Jacobian

 . (4.2)

We see that in order to compute the gradient, we have to compute the U-Net Jacobian of the
heavy diffusion model, which is cumbersome, and highly unstable especially in the low noise
regime [78]. SDS proposes a surprisingly simple fix to Eq. (4.2) by setting the U-Net Jacobian
as the identity matrix (skipping over the gradient)

∇ϕLSDS = E
[
(ϵθ(xt, t; c)− ϵ)

∂x

∂ϕ

]
, (4.3)

which is much cheaper and faster to compute. Interestingly, while the choice seems arbitrary, the
resulting scheme Eq. (4.3) turns out to be probability density distillation [79]. The original work
of SDS employs 2D pre-trained text-conditioned diffusion models for when g(ϕ) is a 3D Neural
Radius Field (NeRF) [80] renderer. Building upon SDS, several subsequent works have been
developed, focusing not only on the per-scene optimization of 3D objects [13, 81, 82, 83], but
also on text-to-3D video synthesis [84] and image editing [85, 86, 87]. Despite its widespread
application, SDS is recognized for prominent concerns such as over-saturation, over-smoothing
and a lack of diversity.
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Variational Score Distillation (VSD) [13] tackles this issue by introducing the VSD loss.
Contrary to SDS, which models the 3D parameter ϕ as a constant, VSD treats it as a random
variable. In order to model the 3D distribution, VSD employs particle-based variational inference
and maintains a set of 3D parameters as particles {ϕi}i. For the implementation, another
diffusion model with low-rank adaptation (LoRA), trained during the NeRF optimization
process, is utilized. On the other hand, Collaborative Score Distillation [86] treats multiple
samples in the Stein Variational Gradient Descent [88] update. It adjusts the score function to
enhance the consistency among a set of images simultaneously. Additionally, many studies are
emerging to analyze and improve the limitations of SDS term. Noise Free Score Distillation [89]
decomposes the score into interpretable components and redesigns the term to exclude noise,
thereby preventing undesirable noise distillation during optimization. Yu et al.propose Classifier
Score Distillation [90], based on the finding that classifier score ∇xt log q(y|xt) alone is
sufficient for effective generation.

5. APPLICATIONS

5.1. Text-to-x Foundation Models.

5.1.1. Text-to-Image Generation. Text-to-image (T2I) generation is the task of generating an
image that corresponds to a provided descriptive text. Previous T2I models, working in pixel
space, have improved both sample fidelity and image-text alignment through the integration of
CFG and pre-trained text encoders into the T2I process [91, 10].

The emergence of LDM [11] has accelerated the progress of T2I models. A notable framework
in this domain is SD [11], which utilizes pre-trained VQGAN [92] for latent representation
and introduces cross-attention for diverse conditioning. DALL-E2 [93] leverages a different
approach, training a diffusion model in the CLIP [27] embedding space.

While T2I models such as Imagen and DALL-E2 excel in achieving remarkable image fidelity
and caption alignment, they often lack the capability to provide fine-grained control over spatial
structure. In response, several works have utilized more specific conditions to attain higher
fidelity and precise control. Make-A-Scene [94] and SpaText [95] leverage segmentation masks
to guide the generation process, while GLIGEN [96] enables a pretrained T2I diffusion model
to be conditioned on bounding boxes. Furthermore, Zhang et al. [97] present ControlNet, a
neural network architecture that links a trainable copy and the original frozen model through
a specialized convolution layer. This layer initializes weights to zeros and does not add noise
during the fine-tuning process.

5.1.2. Text-to-3D Generation. Given the success of numerous diffusion models in generating
high-quality and realistic 2D images, there is a growing interest in extending these models to the
3D field. One approach in this direction is training a diffusion model using 3D data [98, 99, 100].
However, these methods are constrained by the requirement for modality-specific data.

DreamFusion [12] addresses this limitation by optimizing a 3D representation to ensure that
the rendered image, from any viewpoint, maintains a high likelihood as assessed by the diffusion
model, given the text prompt. Latent-NeRF [83] extends the score distillation framework to a
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condensed latent space, thereby boosting computational efficiency. ED-NeRF [101] enhances the
latent generation process by introducing a refinement layer and extending the Delta Denoising
Score [85] into the 3D domain. While these approaches enable the utilization of the vast data
domain of 2D diffusion models, the generated 3D assets often suffer from inconsistencies in
geometry formation due to the lack of awareness of the camera view. To address this, Zero-1-
to-3 [102] finetunes a pretrained T2I diffusion model to incorporate camera pose conditioning,
enabling zero-shot novel view synthesis and 3D reconstruction from a single image. Additionally,
there are models that utilize CLIP [27] to align each view of the 3D representation model with
the corresponding text [103, 104, 105].

Recently, with the emergence of 3D Gaussian Splatting as a novel representation method for
3D scenes, there has been active research into utilizing diffusion models as priors for training
Gaussian Splatting representation [106, 107].

5.1.3. Text-to-Video Generation. Video Diffusion Models (VDMs) originated with the work
of Ho et al. [15], integrated diffusion models into video generation tasks using 3D U-Net
architecture. Subsequently, Make-A-Video [33] proposes spatio-temporally factorized diffusion
model, which is built upon a pretrained T2I model. This improvement is achieved through the
utilization of pseudo-3D convolution and temporal attention layers. On the other hand, Imagen
Video [14] is a text-conditional video generation system that relies on cascaded video diffusion
models. The utilization of configurations informed by recent discoveries, such as employing
a frozen T5 text encoder and classifier-free guidance, enhances its performance. Blattman et
al. [16] and Zhou et al. [108] apply the LDM paradigm to high-resolution video generation and
improve training efficiency. Building upon latent-based VDMs, Tune-A-Video [109] proposes a
one-shot video tuning method that does not necessitate large-scale video datasets. Show-1 [110]
combines the strengths and addresses the weaknesses of both pixel-based and latent-based
VDMs, resulting in notable performance improvements.

5.2. Inverse Problems. Given

y = Ax+ n, y ∈ Rn,x ∈ Rd,A ∈ Rd×n,n ∼ N (0, σ2
yI), (5.1)

the goal of inverse problems is to infer the unknown signal x from the degraded measurement
y. One canonical way to solve the problem is through posterior sampling from p(x|y) ∝
p(x)p(y|x), where the likelihood p(y|x) is given from Eq. (5.1), and one needs to specify the
prior p(x). Diffusion model-based inverse problem solvers (DIS) use the diffusion prior by using
a plug-in approximation ∇xt log p(xt) ≈ sθ∗(xt, t), and devise different ways of incorporating
the likelihood during the sampling process. Earlier methods used alternating projections in
between the unconditional denoising steps of the diffusion model [5, 111, 112, 113, 114]. Later,
attempts to approximate the intractable time-dependent log-likelihood p(y|xt) were proposed.
Score-ALD [115] uses

∇xt log p(y|xt) ≈ A⊤ (Axt − y)

σ2
y + γ2t

,
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where γt is an annealing hyper-parameter. The family of DDRM [116, 117] uses

∇xt log p(y|xt) ≈
y − xt

|σ2
y − σ2

t |
,

where σt is the noise level of the diffusion at time t, for the case of A = I . For a general A, one
computes singular value decomposition (SVD) to weight the spectral components differently
according to the noise level in that specific component. Diffusion Posterior Sampling (DPS)
uses

p(y|xt) =

∫
p(y|x0)p(x0|xt)dx0 ≈ p(y|x0 = E[x0|xt]),

by leveraging the Jensen’s approximation. DPS is a general framework that can be used to
solve a fully general class of inverse problems including non-linear operators and various noise
types. Variants include ΠGDM [118] that uses a Gaussian approximation for p(x0|xt), and
MCG [119] that additionally imposes projections onto the measurement subspace.

DIS was extended to LDMs, which are typically more useful for high-resolution image
reconstruction leveraging text guidance [120, 121, 122, 123, 124]. DIS was also extended to
more challenging cases, including when the operator A is blind [125, 126, 127]; when the
signal to reconstruct is 3D, but the prior is only modeled in 2D [128, 129]; and when there is a
mismatch between the training distribution and the testing distribution [130].

5.3. Image editing with Text-to-image Diffusion Models. The objective of text-driven image
editing is to align with the content specified in a target prompt while also integrating the
structure and overall styles of an input image. DiffusionCLIP [131] enables image manipulation
by finetuning the score function during the reverse diffusion process, guided by a CLIP loss that
manages the attributes outlined in the text prompt. Yang et al. [132] leverages both CLIP loss
and contrastive loss to enable zero-shot style transfer. The widespread use of LDMs has spurred
extensive exploration into various research. Prompt-to-Prompt [133] and Pix2Pix-zero [134]
propose preserving certain content from the source image by leveraging the cross-attention maps.
On the other hand, Plug and Play Diffusion [135] injects spatial features from the decoder and
their self-attention map. This enables precise controlled image translation over the generated
shape and layout. Combining these methods with the inversion of real images [136, 137] shows
enhanced editing performance.

6. CONCLUSION

In this work, we reviewed the theory of diffusion models, their variations in the trajectory
and the sampling process, and their widespread applications. While there have been tremendous
advances in the field, benefitting not only from the technical advances but also from the sheer
scaling of data and compute, unsolved questions and applications remain. Is denoising trajectory
the optimal generative path? What is the better architecture, U-Nets or Transformers? Will
diffusion models start to prevail in the language domain, as they do in vision? The answers to
the posed questions will not only push the boundaries of what is technically possible but also
deepen our understanding of the underlying principles that make diffusion models so effective.
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