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Fault Diagnosis of Rotating Machinery Based on
Multi-Class Support Vector Machines
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Support vector machines (SVMs) have become one of the most popular approaches to

learning from examples and have many potential applications in science and engineering.
However, their applications in fault diagnosis of rotating machinery are rather limited. Most of
the published papers focus on some special fault diagnoses. This study covers the overall

diagnosis procedures on most of the faults experienced in rotating machinery and examines the
performance of different SVMs strategies. The excellent characteristics of SVMs are demon-
strated by comparing the results obtained by artificial neural networks (ANNs) using vibration

signals of a fault simulator.
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1. Introduction

Fault diagnosis of rotating machinery is in-
creasingly becoming important in manufacturing
industry due to the demand to keep up with
production and the need to have highly reliable
machinery. However, many of the techniques av-
ailable presently require a great deal of expert
knowledge to apply them successfully. Therefore
simpler approaches are needed to allow relatively
unskilled operators to make reliable decisions
without the need of a specialist to examine the
data and diagnose the problems. Hence, there is a
demand to incorporate techniques that can make
decisions on the health of the machine autom-
atically and reliably. By learning from known
problems, such as unbalance, shaft misalignment
and bearing defects, fault diagnosis can be carri-
ed out. Artificial neural networks (ANNs) and
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support vector machines (SVMs) are popularly
used as diagnostic tools in machine health condi-
tion monitoring.

ANNs have been applied in automated de-
tection and diagnosis of machine conditions. The
techniques can be treated as generalization/clas-
sification problems and are based on learning
pattern from empirical data. However, traditional
neural network approach has limitations on gen-
eralization and leads to models that can over fit
the training data. This deficiency is partly due
to the optimization algorithms used in the ANNs
for the selection of parameters and the statistical
measurements used to select the model. Many
incremental and competitive learning networks
were proposed to handle the problems mentioned
above and to increase the classification perform-
ance. In the literature, self-organizing feature map
(SOFM) (Kohonen, 1995), learning vector quan-
tization (LVQ) (Kangas and Kohonen, 1996),
radial basis function (RBF) (Sundararajan, 1999)
and adaptive resonance theory (ART) (Capenter
and Grossberg, 1988) networks can be seen as the
most basic schemes in competitive learning net-
work used in machine fault diagnosis.

SVMs are relatively new computing methods
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which are based on statistical learning theory
presented by Vapnik (1999). SVMs have recently
attracted a great deal of interest in the machine
diagnostic community for their high accuracy and
good generalization capability (Burges, 1998).
The main difference between ANNs and SVMs is
in the principle of risk minimization. ANNs in-
corporate recursive algorithms that adjust system
parameters such as weights during the learning
process. These algorithms adjust system parame-
ters based on a risk function such as empirical
risk minimization (ERM). During the learning
process, the SVM uses a risk function known as
structural risk minimization (SRM) which has
been shown to be superior to ERM. The ERM is
based just on minimizing the error of the training
data itself. If the training data is sparse and/or
not representative of the underlying distribution,
then the system will be poorly trained and hence
have limited classification performance (Vapnik,
1992) . The SRM allows the algorithm designer to
take into account the sparseness of the data and
minimizes the error of the upper bound of an
expected risk. The difference in risk minimization
leads to better generalization performance for
SVMs than ANN.

SVM-based classification is a modern machine
learning method that is rarely used in fault diag-
nosis even though it has given superior results in
image identification and face recognition (Osuna
et al., 1997 ; Burges, 1998). The possibilities of
SVMs using binary classification in machine fault
detection of damaged gears (Jack and Nandi,
2002), rolling element bearings (Samanta, 2004)
and reciprocating compressors (Yang et al., 2005)
are being attempted only recently. There are still
limited applications in ‘real’ engineering situation
using the technique. One of the reasons for the
low popularity of SVM is essentially a two-class
classifier, whereas formulations of other classific-
ation structures like neural network classifiers
allow straightforward extension to multi-class
classification problems which is often faced in
fault diagnosis. A direct multi-class extension of
SVM usually leads to a very complex optimiza-
tion problem and tedious computations. There-
fore, multi-class problems are often solved by

training several binary SVM classifiers and fusing
the outputs of the classifiers to find the global
classification decision (Suykens et al., 2002).

The goal of this paper is to present a fault
diagnosis scheme based on multi-class SVMs for
a rotating machinery. This paper offers a com-
parison between two kinds of algorithms, the
SVMs and ANNSs such as the SOFM (Yang et
al., 2000a), LVQ (Yang et al., 2000b) and RBF
(Yang et al.,, 2002). Same data obtained from a
fault simulator were used to train and test these
algorithms.

2. Support Vector Machines
(SVMs)

SVM is a relatively new computational learn-
ing method based on the statistical learning theo-
ry presented by Vapnik (1999). In SVM, original
input space is mapped into a high-dimensional
dot product space called a feature space, and in
the feature space the optimal hyperplane is deter-
mined to maximize the generalization ability of

" the classifier. The optimal hyperplane is found by

exploiting the optimization theory, and respecting
insights provided by the statistical learning theo-
ry. For detailed tutorials on the subject the reader
can refer to references (Vapnik, 1999 ; Burges,
1998 ; Muller, 2001) and references cited therein.
In this section a brief outline of the method will
be described.

2.1 Binary classification

The SVM attempts to create a line or hyper-
plane between two sets of data for classification.
In a two-dimensional situation, the action of the
SVM can be explained easily without any loss of
generality. Figure 1 shows how to classify a series
of points into two different classes of data, class
A (circles) and class B (squares). The SVM
attempts to place a linear boundary represented
by a solid line between the two different classes
and orients it in such a way that the margin re-
presented by dotted lines is maximized. The SVM
tries to orient the boundary such that the distance
between the boundary and the nearest data point
in each class is maximal. The boundary is then
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Fig. 1 An example of classification of two classes by
SVM

placed in the middle of this margin between the
two points. The nearest data points are used to
define the margins and are known as support vec-
tors {SVs) represented by gray circle and square.
Once the SVs are selected, the rest of the feature
sets can be discarded, since the SVs have all the
necessary information for the classifier (Samanta,
2004).

Let (x; y:), with =1, =, N; be a training
set S; each x;ER" belongs to a class by ¥;&
{—1, 1}. The goal is to define a hyperplane which
divides S, such that all the points with the same
label are on the same side of the hyperplane while
maximizing the distance between the two classes
A, B and the hyperplane. The boundary can be
expressed as follows :

wx+b=0, wER", b&R (1)

where the vector w defines the boundary, X is the
input vector of dimension N and b is a scalar
threshold. At the margins, where the SVs are
located, the equations for classes A and B, re-
spectively, are as follows :

w-x+b=1, wex+b=—1 (2)

As SVs correspond to the extremities of the data
for a given class, the following decision function
can be used to classify any data point in either

class A or B:

£ (x)=sign(w-x+5) (3)

For Gaussian kernels every finite training set is
linearly separable in feature space (Burges, 1998).
Then the optimal hyperplane separating the data
can be obtained as a solution to the following
optimization problem (Scholkopf, 1997) :

find w& R”Y to minimize
r(w)=1/2|wl? (4)
subject to
y(w-xi+b) =1 (i=1,2, -, N) (5)

where N is the number of training sets.

However, if the only possibility to access the
feature space is via dot pfoducts computed by the
kernel, we cannot solve Eq. (4) directly since w
lies in that feature space. Biit it turns out that we
can get rid of the explicit usage of w by forming
the dual optimization problem (Scholkopf, 1997).
Introducing Lagrange multipliers @; 20, (=1, 2,
<+, N, one for each of the constraints in Eq. (5),
we obtain the following Lagrangian :

N N
Liw, b, &) =HlwlP—Hawiw-x—b) +2a: (6)

The task is to minimize Eq. {(6) with respect to w
and b, and to maximize it with respect to a@;. At
the optimal point, we have the following saddle
point equations :

oL _, oL _

ow % op ° @)
which translate into
N N
W=i§1diini, l_;laiyi=0 (8)

From the first equation of Eq. (8), we find that w
is contained in the subspace spanned by X. By
substituting Eq. (8) into Eq. (6), we get the dual
quadratic optimization problem :

Maximize
N 1 N
~Lo(a) =§ai—7§aiajyiiji-xj (9)
subject to

N
a’fZO(izl, 2, -, N), Zlaiyz'=0 (10)
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Thus, by solving the dual optimization problem,
one obtains the coefficient @; which is required to
express the w to solve Eq. (4). This leads to the
nonlinear decision function

f(x)=sign<gaiyi(xi-x) +b> (11)

In cases where the linear boundary in the input
spaces are not enough to separate the two classes
properly, it is possible to create a hyperplane that
allows a linear separation in the higher dimen-
sion. In SVMs, this is achieved through the use of
a transformation ® (x) that converts the data from
an N-dimensional input space to §-dimensional
feature space :

s=o(x) (12)

where xER” and s€R%

The SVM classifier is to take the input feature
set and map it into a higher dimensional space
using a non-linear function called a kernel. The
reasoning for mapping into a higher dimensional
space is based on a theory developed by Cover
known as the Cover theorem (Cover, 1965). This
theorem basically states that if a pattern recogni-
tion problem is mapped into a high enough di-
mensional space, then the classes will be linearly
separable and will hence allow a simple linear
discriminate technique to separate the classes.
Figure 2 shows the transformation from input
space to feature space where the nonlinear boun-
dary has been transformed into a linear boundary
in the feature space.

Substituting the transformation Eq. (12) into
Eq. (3) gives the decision function as,

£ () =sign ( Zawi(@(x) -2(x)) +5)  (13)

The kernel function K(x, y)=%(x)-®(y) is
used to perform the transformation into higher-

Nor-linear Optimal Linear
kernel hyperplane feature
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Fig. 2 Transformation to linear feature space from
nonlinear input space

dimensional feature space. The basic form of
SVM is obtained after substituting the kernel
function in the decision function Eq. (13) as
follows :

£ (0 =sign( Raok (x, x) +5) (14

Any function that satisfies Mercer’s theorem
(Osuna et al., 1997) can be used as a kernel func-
tion to compute a dot product in feature space.
There are different kernel functions used in
SVMs, such as linear, polynomial, Laplacian
RBF, chi-square and Gaussian RBF, which avoid
the computational burden of explicitly represen-
ting the feature vectors. The selection of an ap-
propriate'kernel function is important, since the
kernel function defines the feature space in which
the training set examples will be classified. As
long as the kernel function is legitimate, an SVM
will operate correctly even if the designer does not
know exactly what features of the training data
are being used in the kernel-induced feature
space. The definition of legitimate kernel function
is given by Mercer’s theorem : the function must
be continuous and positive definite. Human ex-
perts often find it easier to specify a kernel func-
tion than to specify explicitly the training set fea-
tures for being used by the classifier. The kernel
expresses prior knowledge about the phenome-
non being modeled and encoded as a similarity
measure between two vectors. In this work, li-
near, polynomial and Gaussian RBF kernel func-
tions were evaluated and formulated as shown in
Table 1.

2.2 Multi-class classification

The above discussion deals with binary classi-
fication where the class labels can take only two
values: *1. Many real-world problems, how-
ever, have more than two classes. For example, in
fault diagnosis of rotating machinery there are

Table 1 Formulation for used in kernel functions

Kernel K(x, y)
Linear Xy
Polynomial (x-y+1)¢
Gaussian RBF exp{ — (|x—y[*/206®}
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several fault classes, such as mechanical unba-
lance, misalignment and bearing faults. Multi-
class classification problems can be solved using
one of the voting schemes, which are based on
combining binary classification decision func-
tions. Various approaches, such as one-against-
all (Bottou et al., 1994; Hsu and Lin, 2002),
one-against-one (Knerr et al., 1990 ; Friedman,
2003 ; KreBel, 1999), directed acyclic graph (Platt
et al., 2000) and binary tree (Schwenker, 2000)
have been developed to decompose a multi-class
problem into a number of binary classification
problems. '

The earliest usage of SVM multi-class classifi-
cation is probably the one-against-all (rest)
method (Knerr et al., 1990 ; Friedman, 2003). To
obtain k-class classifiers, it is common to con-
struct a set of binary classifiers f, **-, fz, with
each trained to separate one class from the rest
and combine them by performing the multi-class
classification according to the maximal output
before applying the sign function. The flow chart
of the working process is shown in Fig. 3(a).
Here the ith SVM is trained with all of the data
set in the ¢th class with positive labels and all
other examples with negative labels. In the classi-
fication phase, the classifier with the maximal
output defines the estimated class label of the
current input vector.

Another frequently used method is the one-
against-one method. In this method, for k-
classes, will results in £(2—1)/2 binary classi-
fiers as shown in Fig. 3(b). The number of classi-
fiers is usually larger than the number of one-
against-all classifiers. For instance, if £=10, one
needs to train 45 binary classifiers rather than 10
classifiers as in the method above. Although this
requires a larger training time, the individual
problems that need to be trained are significantly
smaller. Furthermore, if the training algorithm
scales superlinearly with the training set size, it is
possible to save processing time. This is related to
the runtime execution speed. To classify a test
pattern in this work, we need to evaluate all 45
binary classifiers and classify them according to
the classes which get the highest number of votes.
A vote for a given class is defined as a classifier

Data input

i Condition decision l

(a) One-against-all approach

I Data input l
cz c3 c3 c8
c1 Ct cz c7
+) (+) + (+)
@jr]?;-r:e ot —

[ Decision I l Non-Decision I

(b) One-against-one approach

Fig. 3 Classification strategy of multi-class SVM

putting the pattern into that class. The individual
classifiers, however, are usually smaller in size
(they have fewer SVs) than they would be in the
one-against-all approach. This is because, (i) the
training sets are smaller and (ii) the problems to
be learned are usually easier, since the classes
have less overlap. If & is large and we need to
evaluate the £(k—1)/2 classifiers, then the res-
ulting system may be slower than the correspond-
ing one-against-all SVMs.

To solve the SVM problem one has to solve
the quadratic programming (QP) problem of Eq.
(9) under the constraints of Eqs. (10) and (11).
Vapnik (1982) describes a method which used
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the projected conjugate gradient algorithm to
solve the SVM-QP problem. Sequential minimal
optimization (SMOQ) proposed by Platt (1998) is
a simple algorithm that can be used to solve the
SVM-QP problem without any additional matrix
storage and without using the numerical QP
optimization steps. This method decomposes the
overall QP problem into QP sub-problems using
the Osuna’s theorem to ensure convergence. In
this paper the SMO is used as a solver and de-
tailed descriptions can be found in Platt (1998),
Smola and Scholkopf (1998), Burges (1998) and
Keerthi and Shevade (2002).

3. SVM-based Diagnosis System

3.1 System structure

The block diagram of a multi-class SVM based
fault diagnosis system is shown in Fig. 4. The
system consists of three sections: data acquisi-
tion, feature extraction and selection, and train-
ing and testing for fault diagnosis. The raw time
signal is obtained from the Machinery Fault Si-
mulator shown in Fig. 5. The features of the data
are extracted through the discrete wavelet trans-
form and feature extraction algorithms (Yang et
al., 2004a). Wavelet transform is more effective
than FFT in terms of data compression and is

Data Acquisition

Fealure Extraction

Training process

Training Data Set
Kernel Transform
Optimal Hyperplane

Support
Vectors

Testing process

Testing Data Set

Kernel Transform

Decision

le—
¥

( Classification Result ‘

Fig. 4 Block diagram of a multi-class SVMs classi-
fier system

highly tolerant to the presence of additive noise
and drift in the sensor responses. Feature selec-
tion technique is applied to rank the importance
of input features from the extracted features.
Finally, the SVMs are trained and used to classify
the machinery faults.

3.2 Data acquisition

Experiments were performed on a small test rig
(Machinery Fault Simulator) shown in Fig. 5
which can simulate most of faults that can com-
mbnly occur in a rotating machinery, such as
misalignment, unbalance, resonance, ball bear-
ing faults and so on. The machine has a range of
operating speeds up to 6000 rpm. The fault simu-
lator has a motor, a coupling, bearings, discs and
a shaft. In this work the faults to be analyzed are
the bearing faults and structural faults such as
unbalance and misalignment. The faulty bearings
used in the experiments were rolling element bear-
ings with a damage on the inner race, the outer
race, a ball and the combination of these faults,
respectively. The parallel misalignment and angu-
lar misalignment were simulated by adjusting
the height and degree of the simulator base plate
using thin shims, respectively. Adding an unba-
lance mass on the disc leads to mechanical unba-
lance. A total 8 classes were analyzed in this
experiment and detailed descriptions of the faults
are shown in Table 2.

Acceleration in the radial direction was mea-

sured by an accelerometer located on top of the

vz

Fig. 5 Machinery fault simulator
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Table 2 Description of each fault condition

Fault type Label Description
Normal Cl No fault
Outer race defect C2 A spalling on the outer raceway surface
Inner race defect C3 A spalling on the inner raceway surface
Ball defect C4 A spalling on the ball surface
Complex bearing defect Cs Multiple defects with an inner, outer race and ball defect -
Angular misalignment C6 Angular eccentricity : 0.7°
Parallel misalignment (o) Parallel eccentricity : 2 mm
Unbalance C8 Mechanical unbalance : 578 g-mm
- <
H -1
z 2
£ H]
< <
-0.6 ; : ; ; -0.6 ; : ; ; ;
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07
Time (s) Time (s)
(a) Normal condition (b) Parallel misalignment
0.6 1
0.4 H
> z
< s 0.2
= =
2 2
= = 0.0
a a
S E 0.2 - i I 3 !
i : | [
-0.6 T v T T 06
00 01 02 03 04 05 08 07

Time (s)
{c) Unbalance "

T T T t
[N¢] 0.1 0.2 0.3 0.4 0.5 0.8 0.7
. Time (s)

(d) Bearing inner race fault

Fig. 6 The vibration signals from the machinery fault simulator

right bearing housing. The shaft speed was ob-
tained by a laser speedometer. Twenty continuous
measurements were recorded for each condition.
The maximum acquisition frequency rate was 5
kHz and the sampling number was 16384. A
mobile DSP analyzer was used to perform data
acquisition and the data was stored in a notebook
computer. Samples of the raw vibration signals
are shown in Fig. 6. The waveform of normal
condition is quite clear about the period of run-
ning speed. In the faulty bearing waveform, there
are many impulses related to the inner race defect.

3.3 Feature extraction

Features describing various attributes of. the
fault condition were extracted and a classifier
used these attributes to assign a label to each
fault. Therefore, the classification performance
depends heavily on the quality of the feature
extracted (Ob et al., 2004).

In order to improve signal to noise ratio, 1-D
discrete wavelet transform was used to decompose
the time signal. The discrete wavelet transform
(DWT) permits a systematic decomposition of a
signal into its sub-band levels. The analysis of the
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data was performed using the MATLAB 5.1
Wavelet Toolbox (Misiti et al., 1996). Twenty
time-waveform signals for each class were pro-
cessed using the Daubeches-10 (db-10) wavelet
(Daubeches, 1992) to estimate the condition. The
sub-band (level) or the multi-resolution analysis
(MRA) was performed by dividing them into ten
sub-bands in the frequency range from 0-5 kHz.
Levels 1 to 3 (0.625-5 kHz) in MRA are the most
dominant band and other sub-bands cannot dif-
ferentiate the difference between normal and faul-
ty conditions. Hence, the feature extraction from
levels 1 to 3 (D1-D3) could be very effectively
realized. In Fig. 7, levels 1, 2 and 3 of wavelet
coefficients for different conditions (C1-C8) un-
der consideration correspond to 2.5-5 kHz, 1.25-
2.5 kHz and 0.625-1.25 kHz frequency bands, re-
spectively.

The wavelet transformed signal and the origi-
nal signal were then estimated by eight feature

Ci C2 ¢c3 C4 C5 C6 C7 C8
(a) Mean and RMS

C1 c2 c3 C4 Cb C6 C7 cs
(c) Skewness and kurtosis

parameters such as mean, standard deviation,
RMS, shape factor, skewness, kurtosis, crest factor
and entropy estimation. Figure 8 shows typical
results of feature extraction of the time signals.
Finally, a total 32 feature parameters (four kinds

ct Ccz C3 c4 C5 o6 C7 C8
Fig. 7 Wavelet transform of vibration signal under

different conditions

u  Shape factor
o Crest factor

6.0+

C1 C2 €3 €4 C5 Cé6 C7 [o1:]
(b) Shape factor and crest factor

s Entropy estimation
o Entropy error

'Cl C2 c3 €4 C5 Ce C7  c8
(d) Entropy estimation and entropy error

Fig. 8 Feature extraction of the time waveform signal
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Table 3 Attribute label of each input feature

Attribute label

Feature
Time waveform Wavelet level 1 Wavelet level 2 Wavelet level 3

Mean I 9 17 25
RMS 2 10 18 26
Shape factor 3 11 19 27
Skewness 4 12 20 28
Kurtosis 5 13 21 29
Crest factor 6 14 22 30
Entropy estimation 7 15 23 31
Entropy error 8 16 24 32

of signals, eight parameters) were obtained as
shown in Table 3.

3.4 Feature selection

Too many features can cause cures of di-
mensionality and peaking phenomenon (Bishop,
1995 ; Raudys et al,, 1991) that greatly degrade
classification accuracy since some features are
essential, some are less important, some of them
may not be mutually independent and some may
be useless. Also too many features can be a bur-
den, as it requires a large amount of time to cal-
culate. Thus feature selection is necessary to re-
move garbage features and pick up the significant
ones for fault diagnosis. Usually 5 to 12 parame-
ters are sufficient to perform the calculation and
provide sufficient accuracy (Yang et al., 2000a ;
2000b). In order to remove the redundant and
irrelevant features from the feature set, a careful
analysis of the feature set must be carried out. The
objective is to identify the features that show high
variability between different classes and thus help
in distinguishiﬁg between them. In order to solve
this problem, an evaluation technique (Yang et
al., 2004) is used to select feature parameters that
can represent the fault features from using all
parameters and is described as follows :

Step 1. Calculate the relative average value of the
sampling data for the same class d;; and then
obtain the average distance of 8 classes dg:. The
equation can be defined as follows :

L S () =
dij_NX (N_]) m§=1|pld(m) ﬁu(”” (16)

(m, n=1, 2, -, N, m*+n)

where N is the sampling number of each class
(N=20), pi; is the value of sth feature under
7th class.

1 M
da,'=__§dij ( 17)

where M is the number of class (M =8).

Step 2. Calculate the average distance of inter-
class dg;

FE S - N
B = QS =) md Poim —bain] )
(m, n=1,2, -, M; m¥n)

where paim and pain are the average values of
the sampling data under different class.

N
bas=qr 2o (n=1,2,+ N)  (19)
n=1 .

Step 3. Calculate the ratio dai/ds:

Step 4. Select the eight largest feature parame-
ters a;, =1 to 8. Bigger «: represents a well
selected feature. This requires a small dg; and a
large dj:.

a;i= dt;i/dai (20)

where a; (=1, ---, k) is the effectiveness factor
of the features and k is the number of selected
features.

Given @;, one can now establish a raking me-
thodology among the individual feature com-
ponents. The useful features are expected to show
high values of @;, indicating a good inter—class
spread in the classifier.
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3.5 Fault diagnosis

The four classifiers used in this work were
SVMs, SOFM, LVQ and RBF networks (Yang et
al., 2004b) . Same examples were used to compare
the effectiveness among these networks. The fea-
tures selected from feature selection algorithm
were used as input vectors. The breakdown of
the classification process consisted of 80 samples
for the training set and 80 samples for the tes-
ting set (ten samples for each class). In the trai-
ning process, the networks were trained until the
mean square error is below 0.01 or the maximum
epochs (=10000) were reached.

4. Simulation Results

4.1 Effect of kernel functions

The performance of a SVM depends to a great
extent on the choice of the kernel function to
transform a data from input space to a higher
dimensional feature space (Smola et al., 1998).
The choice of kernel function is data depen-
dent and there are no definite rules governing its
choice that might yield a satisfactory perform-
ance. Table 4 presents results of SVM with the
three kernel functions defined in Table 1 and
used the same eight selected feature examples. In
Table 4, d is the degree of the polynomial. The
width of the RBF kernel parameter is given by ¢
and can be determined in general by an iterative

process selecting an optimum value based on the
full feature set (Scholkopf, 1997). These kernels
are also well accepted for constructing SVM and
provide excellent results for real-world applica-
tions (Strauss and Steidel, 2002). We have inves-
tigated the construction of multi-class classifiers
using the one-against-one method and the one-
against-all method. The most important criterion
for evaluating the performance of these methods
is their classification success rate. The results
in Table 4 show that the performance of one-
against-one classifiers is better than that of one-
against-all classifiers from the view of classific-
ation accuracy and training time. The overall
success ratio of class classification ranged from
98.125 to 100% for training and 88.75 to 98.75%
for testing. Among these classifiers, Gaussian
RBF is the best with high training and testing
accuracy. The detailed process of one against all
method is illustrated in Table 5. Some SVs are
used many times for different classes. Thus the
total SVs are not equal to the summation of each
class of SVs.

4.2 Effect of feature selection

Figure 9 shows the computation results of effec-
tiveness factor @; of 32 feature parameters. From
the magnitude of the effectiveness factor, some of
the feature parameters were selected. They were
entropy error of the time waveform signal and

Table 4 Fault classification results due to kernel and multi-class classification strategy

Multi-class Classification rate (%) Number of Training time
Kernel . -
approach Training Testing SVs (s)

Li One vs. one 100 93.75 44 1.25
tmear One vs. all 98.125 90.00 55 1210
Polynomial One vs. one 100 93.75 41 0.93
(d=1) One vs. all 98.125 90.00 55 20.56
Polynomial One vs. one 100 92.5 37 0.94
(d=2) One vs. all 100 90.00 38 28.31
Polynomial One vs. one 100 93.75 37 0.94
(d=3) One vs. all 100 88.75 32 22.45
Polynomial One vs. one 100 93.75 36 0.98
(d=4) One vs. all 100 91.25 36 62.66
Gaussian RBF One vs. one 100 98.75 43 3.37
(6=0.168) One vs. all 100 92.50 44 9.90
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Table 5 Performance comparisons for one-against-all method

\ Polynomial Gaussian RBF
Kernel Linear
d=1 d=2 d=3 d=4 0=0.168
SVMI 4 4 4 4 5 21
SVM2 10 10 7 7 7 20
Number SVM3 4 4 3 "3 3 21
of SVs SVM4 6 6 6 4 5 21
SVM5 17 17 9 -7 9 10
SVM6 18 18 10 8 7 6
SVM7 7 7 5 5 6 22
Total 55 55 38 32 36 44
Cl 0 0 0 0 0 0
Cc2 2 2 2 2 2 1
C3 1 1 1 2 1 0
Number Cc4 2 2 1 3 1 4
of error C5 0 0 0 0 0 1
c6 3 3 4 2 3 0
Cc7 0 0 0 0 0 0
C8 0 0 0 0 0 0
Success rate (%) 90.0 90.0 90.0 88.75 91.25 92.50

Effectiveness factor o;

02 46 810121416 18202224 26283032
Number of feature

Fig. 9 Effectiveness factor of features

wavelet transform level 1; RMS, crest factor,
entropy estimation and entropy error of wavelet
transform level 2 ; RMS and entropy estimation of
wavelet transform level 3. The selected features
were used as the input vectors of the classifiers for
fault diagnosis.

Table 6 shows the classification results for
SVM using the RBF kernels and the one-against-
one method with the selected features. In each
case, the test success, number of SVs and training
time for the selected features were compared with

the results used in all features without feature
selection. In Table 6, the change of the test suc-
cess and training time are listed against the num-
ber of retained features. When the features are dis-
carded, the training performance monotonically
decreases, while the test performance increases
slightly at the beginning. This can be explained
by the reduced over-fitting effects due to smaller
number of features. A drastic reduction of fea-
tures, however, can lead to a decrease in the test
performance (Hermes and Buhmann, 2000). Fig-
ure 10 shows the influences of the number of
selected features on the test success and training
time. It can be seen that when the number of
selected features takes a small value (e.g., 2), the
test success rate is very low (62.5%). The success
rate increases with increment of the number of
selected features and remains at a maximum value
of 100% in a certain range (i.e., 12-24). It tends
to decease as the number of features continues to
increase. On the other hand, the training time
increased almost linearly with increase in the
number of selected features. The results are very
encouraging as the technique shows a significant
reduction in size of the feature vector in the fea-
ture extraction process. It is particularly useful
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Table 6 Performance comparisons of SVMs with feature selection by using RBF kernels and one-against-one

method
No. of Input features Kernel Test success No. of Training
features width ¢ (%) SVs time (s)
2 16,24 0.142 62.50 54 1.87
4 8,16,22,24 0.50 96.25 49 2.09
6 8,16,22,23,24,31 0.152 96.25 41 2.21
8 8,16,18,22,23,24,26,31 0.168 98.75 43 3.37
10 6,8,16,18,22,23,24,26,31,32 0.162 98.75 48 2.85
12 6,7,8,14,16,18,22,23,24,26,31,32 0.145 100 49 391
16 2,5,6,7,8,14,15,16,18,21,22,23,24, 0.10 100 53 4.62
26,31,32
24 1,2,3,4,5,6,7,8,10,12,13,14,15,16, 0.28 100 56 7.07
18,21,22,23,24,26,29,30,31,32
8 Time waveform (1-8) 0.25 98.75 51 3.23
32 All (1-32) 0.60 97.50 67 7.49

1004
951
904
85
80-
754
704-
654-
60

Test success(%)
Training time{s)

—u— Test success -
P it )| —o— Training time
0 2 4 6 810121416 18202224 26283032

Number of selected features

T

O - N W A N

Fig. 10 Performance of SVMs for different number
of selected features

to reduce the training time in order to improve the
classification performance of the SVM classifier.

4.3 Performance comparison of SVMs and
ANNs

In order to verify the effectiveness and robust-
ness of the proposed classification approach,
the authors compared the classification results
between the SVMs and other traditional neural
networks, such as the SOFM, LVQ and RBF
networks. The above results were obtained from
multi-class SVMs using the one-against-one
classifier and the one-against-all classifier with
the linear, polynomial and Gaussian kernels. The
classification results of the SVMs, SOFM, LVQ
and RBF networks are shown in Table 7. The

Table 7 Classification results of SVMs, SOFM,
LVQ and RBF networks
Classifier SOFM | LVQ RBF | SVMs
Success rate (%) 93 93 89 100

maximum classification success rate for the SVMs
was 100% and for the SOFM, LVQ and RBF
networks were 93%, 93% and 89%, respectively. It
can be concluded from Table 7 that the SVMs
perform significantly better than the SOFM, LVQ
and RBF networks.

5. Conclusions

This paper shows that the proposed SVMs
based fault diagnosis approach for rotating ma-
chinery is superior to many traditional intelligent
networks. The experiments have demonstrated
that this approach can successfully diagnose any
condition and the average fault diagnosis ac-
curacy is above 90%. Although the mechanical
behavior of the each fault results were complex
and non-stationary, the wavelet transform has
been demonstrated to be a useful signal processor
to extract different time-frequency features of sy-
mptoms of various fault conditions. It is shown
that using only the important features for classi-
fication can obtain high success rate and re-
duces the training time of the SVMs classifier.
When the same class on fault diagnosis of rota-
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ting machinery, the success rate of SVMs can
reach 100%, while the SOFM, LVQ and RBF
networks were 93%, 93% and 89%, respectively.
The one-against-one SVM classifier using a
Gaussian RBF kernel shows superior perform-
ance in comparison with the previously published
classifiers and the one-against-all SVM classifier.
The high performance of the SVMs is attributed
primarily to its inherent generalization capability.
This allows the SVMs to be optimized based on
the amount of training data. SVMs hold signifi-
cant promise in the diagnosis of rotating machin-
ery due to their ability to give optimal perform-
ance with a limited training data for application
in real industry.
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