• Title/Summary/Keyword: mRNA activation

Search Result 843, Processing Time 0.03 seconds

Endoplasmic Reticulum Stress Response and Apoptosis via the CoCl2-Induced Hypoxia in Neuronal Cells (CoCl2 처리로 유도된 hypoxia상태에서 세포자살과 ER stress에 관련된 인자의 발현)

  • Kim, Seon-Hwan;Kwon, Hyon-Jo;Koh, Hyeon-Song;Song, Shi-Hun;Kwon, Ki-Sang;Kwon, O-Yu;Choi, Seung-Won
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1820-1828
    • /
    • 2010
  • Cobalt(II) chloride, a chemical compound with the formula$CoCl_2$, has been widely used in the treatment of anemia, as a chemical agent for the induction of hypoxia in cell cultures, and is known to activate hypoxic signaling. However, excessive exposure to cobalt is associated with several clinical conditions, including asthma, pneumonia, and hematological abnormalities, and can lead to tissue and cellular toxicity. It is also known to induce apoptosis. One of the questions was that of whether $CoCl_2$ might induce apoptosis via endoplasmic reticulum (ER) stress in neurons. To address this question, first, the level of DNA fragmentation was measured for assay of apoptotic rates using $CoCl_2$ with neuron PC12 cells. After confirmation of apoptosis inductions, under the same conditions, the expression levels of ER stress associated factors [ER chaperones Bip, calnexin, ERp72, ERp29, PDI, and ER membrane kinases (IRE1, ATF6, PERK)] were examined by RT-PCR and Western blotting. These results indicated that apoptosis is induced through activation of ER membrane kinases via ER stress. In conclusion, during induction of apoptosis through $CoCl_2$-induced hypoxia in neuron PC12 cells, ER membrane kinase of IRE1 was dominantly up-expressed, and, consecutively, TRAF2, which has been suggested to be one of the links connecting apoptosis and ER stress, was strongly up-expressed.

Transcriptome Profiling of Kidney Tissue from FGS/kist Mice, the Korean Animal Model of Focal Segmental Glomerulosclerosis (국소성 분절성 사구체 신병증의 동물 모델 (FGS/kist 생쥐) 신 조직의 유전자 발현 양상)

  • Kang, Hee-Gyung;Lee, Byong-Sop;Lee, Chul-Ho;Ha, Il-Soo;Cheong, Hae-Il;Choi, Yong
    • Childhood Kidney Diseases
    • /
    • v.15 no.1
    • /
    • pp.38-48
    • /
    • 2011
  • Purpose: Focal segmental glomerulosclerosis (FSGS) is the most common glomerulopathy causing pediatric renal failure. Since specific treatment targeting the etiology and pathophysiology of primary FSGS is yet elusive, the authors explored the pathophysiology of FSGS by transcriptome analysis of the disease using an animal model. Methods: FGS/kist strain, a mouse model of primary FSGS, and RFM/kist strain, as control and the parent strain of FGS/kist, were used. Kidney tissues were harvested and isolated renal cortex was used to extract mRNA, which was run on AB 1700 mouse microarray chip after reverse transcription to get the transcriptome profile. Results: Sixty two genes were differentially expressed in FGS/kist kidney tissue compared to the control. Those genes were related to cell cycle/cell death, immune reaction, and lipid metabolism/vasculopathy, and the key molecules of their networks were TNF, IL-6/4, IFN${\gamma}$, TP53, and PPAR${\gamma}$. Conclusion: This study confirmed that renal cell death, immune system activation with subsequent fibrosis, and lipid metabolism-related early vasculopathy were involved in the pathophysiology of FSGS. In addition, the relevance of methodology used in this study, namely transcriptome profiling, and Korean animal model of FGS/kist was validated. Further study would reveal novel pathophysiology of FSGS for new therapeutic targets.

Polysaccharide isolated from fermented barley extract activates macrophages via the MAPK and NF-κB pathways (보리발효추출물로부터 분리한 다당의 대식세포 활성화 및 신호 전달)

  • Kim, Han Wool;Jee, Hee Sook;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.555-563
    • /
    • 2018
  • Barley has nutritional benefits due to its high dietary fiber content; therefore, the intake of whole barley grains is recommended. However, barley is often consumed in the fermented form because of the improved texture and digestibility. The present study was designed to elucidate the intracellular signaling pathway for macrophage activation by the polysaccharide BF-CP from fermented barley. BF-CP is a neutral polysaccharide, composed of neutral sugars, including glucose (70.7%), xylose (11.4%), and arabinose (9.0%). BF-CP exhibited macrophage-stimulatory activity by inducing the production of interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, and nitric oxide in RAW 264.7 macrophages. Further, BF-CP treatment strongly increased the IL-6 and $TNF-{\alpha}$ gene expression in a concentration-dependent manner. Signal transduction experiments using immunoblotting showed that BF-CP phosphorylated mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38, and nuclear factor $(NF)-{\kappa}B$, in RAW 264.7 cells in a concentration-dependent manner. These results suggest that BF-CP activates the macrophages via MAPK and $NF-{\kappa}B$ pathways, and also induces an increase in the production of cytokines.

Genuine traditional Korean medicine, BaekJeol-Tang for the treatment of rheumatoid arthritis

  • Han, Na-Ra;Sim, Woo-Moon;Sul, Moo-Chang;Kim, Min-Cheol;Lee, Chang-Hee;Kim, Dong-Won;Lee, Se-Hun;Lee, Ho-Cheol;Ryu, Jong-Min;Nam, Bong-Soo;Kim, Jong-Ok;Moon, Seong-Oh;Jang, Hyeon-Lok;Kim, Young-Seok;Lee, Ihn;Yang, Jin-Young;Hwang, Kyu-Sun;Chun, Chang-Sun;Jeong, Hyeon-Seok
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.18.1-18.7
    • /
    • 2013
  • Inflammation in rheumatoid arthritis is characterized by immune cell infiltration and cytokine secretion. In particular, mast cells and their cytokines play an important role in the pathogenesis of rheumatoid arthritis. Korean medicine, BaekJeol-Tang (BT) was designed by traditional Korean medicine theory. We already reported therapeutic effect of BT in rheumatoid arthritis. Here, we report the specific underlying mechanism of BT in activated human mast cells, HMC-1 cells. In addition, we report for the first time that BT significantly inhibited the production and mRNA expression of proinflammatory cytokines including thymic stromal lymphopoietin, interleukin (IL)-$1{\beta}$, IL-6, IL-8, and tumor necrosis factor-${\alpha}$ in activated HMC-1 cells. BT also decreased the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and caspapase-1. Taken together, these results indicate that BT has potential as a regulator of inflammatory reactions for the treatment of arthritis such as osteoarthritis and rheumatoid arthritis.

Chronic Administration of Baicalein Decreases Depression-Like Behavior Induced by Repeated Restraint Stress in Rats

  • Lee, Bombi;Sur, Bongjun;Park, Jinhee;Kim, Sung-Hun;Kwon, Sunoh;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.393-403
    • /
    • 2013
  • Baicalein (BA), a plant-derived active flavonoid present in the root of Scutellaria baicalensis, has been widely used for the treatment of stress-related neuropsychiatric disorders including depression. Previous studies have demonstrated that repeated restraint stress disrupts the activity of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depression. The behavioral and neurochemical basis of the BA effect on depression remain unclear. The present study used the forced swimming test (FST) and changes in brain neurotransmitter levels to confirm the impact of BA on repeated restraint stress-induced behavioral and neurochemical changes in rats. Male rats received 10, 20, or 40 mg/kg BA (i.p.) 30 min prior to daily exposure to repeated restraint stress (2 h/day) for 14 days. Activation of the HPA axis in response to repeated restraint stress was confirmed by measuring serum corticosterone levels and the expression of corticotrophin-releasing factor in the hypothalamus. Daily BA administration significantly decreased the duration of immobility in the FST, increased sucrose consumption, and restored the stress-related decreases in dopamine concentrations in the hippocampus to near normal levels. BA significantly inhibited the stress-induced decrease in neuronal tyrosine hydroxylase immunoreactivity in the ventral tegmental area and the expression of brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. Taken together, these findings indicate that administration of BA prior to the repeated restraint stress significantly improves helpless behaviors and depressive symptoms, possibly by preventing the decrease in dopamine and BDNF expression. Thus, BA may be a useful agent for the treatment or alleviation of the complex symptoms associated with depression.

Methylated Alteration of SHP1 Complements Mutation of JAK2 Tyrosine Kinase in Patients with Myeloproliferative Neoplasm

  • Yang, Jun-Jun;Chen, Hui;Zheng, Xiao-Qun;Li, Hai-Ying;Wu, Jian-Bo;Tang, Li-Yuan;Gao, Shen-Meng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2219-2225
    • /
    • 2015
  • SHP1 negatively regulates the Janus kinase 2/signal transducer and activator of transcription (JAK2/STAT) signaling pathway, which is constitutively activated in myeloproliferative neoplasms (MPNs) and leukemia. Promoter hypermethylation resulting in epigenetic inactivation of SHP1 has been reported in myelomas, leukemias and other cancers. However, whether SHP1 hypermethylation occurs in MPNs, especially in Chinese patients, has remained unclear. Here, we report that aberrant hypermethylation of SHP1 was observed in several leukemic cell lines and bone marrow mononuclear cells from MPN patients. About 51 of 118 (43.2%) MPN patients including 23 of 50 (46%) polycythaemia vera patients, 20 of 50 (40%) essential thrombocythaemia and 8 of 18 (44.4%) idiopathic myelofibrosis showed hypermethylation by methylation-specific polymerase chain reaction. However, SHP1 methylation was not measured in 20 healthy volunteers. Hypermethylation of SHP1 was found in MPN patients with both positive (34/81, 42%) and negative (17/37, 45.9%) JAK2V617F mutation. The levels of SHP1 mRNA were significantly lower in hypermethylated samples than unmethylated samples, suggesting SHP1 may be epigenetically inactivated in MPN patients. Furthermore, treatment with 5-aza-2'-deoxycytidine (AZA) in K562 cells showing hypermethylation of SHP1 led to progressive demethylation of SHP1, with consequently increased reexpression of SHP1. Meanwhile, phosphorylated JAK2 and STAT3 were progressively reduced. Finally, AZA increased the expression of SHP1 in primary MPN cells with hypermethylation of SHP1. Therefore, our data suggest that epigenetic inactivation of SHP1 contributes to the constitutive activation of JAK2/STAT signaling. Restoration of SHP1 expression by AZA may contribute to clinical treatment for MPN patients.

Suppressive effects of $Schizandra$ $chinensis$ Baillon water extract on allergy-related cytokine generation and degranulation in IgE-antigen complex-stimulated RBL-2H3 cells

  • Chung, Mi-Ja;Kim, Jeong-Mi;Lee, Sang-Chul;Kim, Tae-Woo;Kim, Dae-Jung;Baek, Jong-Mi;Kim, Tae-Hyuk;Lee, Jae-Sung;Kim, Kyoung-Kon;Yoon, Jin-A;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • v.6 no.2
    • /
    • pp.97-105
    • /
    • 2012
  • $Schizandra$ $chinensis$ Baillon is a traditional folk medicine plant that is used to treat and prevent several inflammatory diseases and cancer in Korea, but the underlying mechanisms involved in its anti-allergic activity are not fully understood. This study was designed to investigate mechanisms of anti-allergic activity of a $Schizandra$ $chinensis$ Baillon water extract (SCWE) in immunoglobulin E (IgE)-antigen complex-stimulated RBL2H3 cells and to assess whether gastric and intestinal digestion affects the anti-allergic properties of SCWE. Oxidative stress is an important consequence of the allergic inflammatory response. The antioxidant activities of SCWE increased in a concentration-dependent manner. RBL-2H3 cells were sensitized with monoclonal anti-dinitrophenol (DNP) specific IgE, treated with SCWE, and challenged with the antigen DNP-human serum albumin. SCWE inhibited ${\beta}$-hexosaminidase release and expression of interleukin (IL)-4, IL-13, and tumor necrosis factor-alpha (TNF-${\alpha}$) mRNA and protein in IgE-antigen complex-stimulated RBL2H3 cells. We found that digested SCWE fully maintained its antioxidant activity and anti-allergic activity against the IgE-antigen complex-induced activation of RBL-2H3 cells. SCWE may be useful for preventing allergic diseases, such as asthma. Thus, SCWE could be used as a natural functional ingredient for allergic diseases in the food and/or pharmaceutical industries.

Rifampicin Inhibits the LPS-induced Expression of Toll-like Receptor 2 via the Suppression of NF-${\kappa}B$ DNA-binding Activity in RAW 264.7 Cells

  • Kim, Seong-Keun;Kim, Young-Mi;Yeum, Chung-Eun;Jin, Song-Hyo;Chae, Gue-Tae;Lee, Seong-Beom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.475-482
    • /
    • 2009
  • Rifampicin is a macrocyclic antibiotic which is used extensively for treatment against Mycobacterium tuberculosis and other mycobacterial infections. Recently, a number of studies have focused on the immune-regulatory effects of rifampicin. Therefore, we hypothesized that rifampicin may influence the TLR2 expression in LPS-activated RAW 264.7 cells. In this study, we determined that rifampicin suppresses LPS-induced TLR2 mRNA expression. The down-regulation of TLR2 expression coincided with decreased production of TNF-$\alpha$ Since NF-${\kappa}B$ is a major transcription factor that regulates genes for TLR2 and TNF-$\alpha$, we examined the effect of rifampicin on the LPS-induced NF-${\kappa}B$ activation. Rifampicin inhibited NF-${\kappa}B$ DNA-binding activity in LPS-activated RAW 264.7 cells, while it did not affect IKK$\alpha/\beta$ activity. However, rifampicin slightly inhibited the nuclear translocation of NF-${\kappa}B$ p65. In addition, rifampicin increased physical interaction between pregnane X receptor, a receptor for rifampicin, and NF-${\kappa}B$ p65, suggesting pregnane X receptor interferes with NF-${\kappa}B$ binding to DNA. Taken together, our results demonstrate that rifampicin inhibits LPS-induced TLR2 expression, at least in part, via the suppression of NF-${\kappa}B$ DNA-binding activity in RAW 264.7 cells. Thus, the present results suggest that the rifampicin-mediated inhibition of TLR2 via the suppression of NF-${\kappa}B$ DNA-binding activity may be a novel mechanism of the immune-suppressive effects of rifampicin.

Molecular Target Therapy of AKT and NF-kB Signaling Pathways and Multidrug Resistance by Specific Cell Penetrating Inhibitor Peptides in HL-60 Cells

  • Davoudi, Zahra;Akbarzadeh, Abolfazl;Rahmatiyamchi, Mohammad;Movassaghpour, Ali Akbar;Alipour, Mohsen;Nejati-Koshki, Kazem;Sadeghi, Zohre;Dariushnejad, Hassan;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4353-4358
    • /
    • 2014
  • Background: PI3/AKT and NF-kB signaling pathways are constitutively active in acute myeloid leukemia and cross-talk between the two has been shown in various cancers. However, their role in acute myeloid leukemia has not been completely explored. We therefore used cell penetrating inhibitor peptides to define the contributions of AKT and NF-kB to survival and multi drug resistance (MDR) in HL-60 cells. Materials and Methods: Inhibition of AKT and NF-kB activity by AKT inhibitor peptide and NBD inhibitor peptide, respectively, resulted in decreased expression of mRNA for the MDR1 gene as assessed by real time PCR. In addition, treatment of HL-60 cells with AKT and NBD inhibitor peptides led to inhibition of cell viability and induction of apoptosis in a dose dependent manner as detected by flow cytometer. Results: Finally, co-treatment of HL-60 cells with sub-optimal doses of AKT and NBD inhibitor peptides led to synergistic apoptotic responses in AML cells. Conclusions: These data support a strong biological link between NF-kB and PI3-kinase/AKT pathways in the modulation of antiapoptotic and multi drug resistant effects in AML cells. Synergistic targeting of these pathways using NF-kB and PI3-kinase/AK inhibitor peptides may have a therapeutic potential for AML and possibly other malignancies with constitutive activation of these pathways.

Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide (당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구)

  • Cho, Han-Jin;Shim, Jae-Hoon;So, Hong-Seob;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1226-1234
    • /
    • 2012
  • 3,4,3',5'-Tetrahydroxy-trans-stilbene (piceatannol) is a derivative of resveratrol with a variety of biological activities, including anti-inflammatory, anti-proliferative, and anti-cancer activities. We assessed the mechanisms by which piceatannol inhibits inflammatory responses using lipopolysaccharide (LPS)-treated Raw264.7 murine macrophages. Piceatannol (0~10 ${\mu}mol/L$) decreased LPS-induced release of nitric oxide, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and inhibited LPS-induced protein expression of inducible nitric oxide synthase (iNOS). Activation of nuclear factor-kappaB (NF-${\kappa}B$), activator protein (AP)-1, and signal transducer and activator of transcription 3 (STAT3) are crucial steps during an inflammatory response. Piceatannol prevented LPS-induced degradation of inhibitor of ${\kappa}B$ ($I{\kappa}B$), translocation of p65 to the nucleus, and phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Additionally, piceatannol inhibited LPS-induced phosphorylation of STAT3 and IL-6-induced translocation of STAT3 to the nucleus. Furthermore, piceatannol increased the protein and mRNA levels of hemeoxygenase (HO)-1, the rate-limiting enzyme of heme catabolism that plays a critical role in mediating antioxidant and anti-inflammatory effects. Piceatannol further induced antioxidant response elements (ARE)-driven luciferase activity in Raw264.7 cells transfected with an ARE-luciferase reporter construct containing the enhancer 2 and minimal promoter region of HO-1. These results suggest that piceatannol exerts anti-inflammatory effects via the down-regulation of iNOS expression and up-regulation of HO-1 expression.