DOI QR코드

DOI QR Code

Endoplasmic Reticulum Stress Response and Apoptosis via the CoCl2-Induced Hypoxia in Neuronal Cells

CoCl2 처리로 유도된 hypoxia상태에서 세포자살과 ER stress에 관련된 인자의 발현

  • Kim, Seon-Hwan (Department of Neurosurgery, Chungnam National University School of Medicine) ;
  • Kwon, Hyon-Jo (Department of Neurosurgery, Chungnam National University School of Medicine) ;
  • Koh, Hyeon-Song (Department of Neurosurgery, Chungnam National University School of Medicine) ;
  • Song, Shi-Hun (Department of Neurosurgery, Chungnam National University School of Medicine) ;
  • Kwon, Ki-Sang (Department of Anatomy, Chungnam National University School of Medicine) ;
  • Kwon, O-Yu (Department of Anatomy, Chungnam National University School of Medicine) ;
  • Choi, Seung-Won (Department of Neurosurgery, Chungnam National University School of Medicine)
  • 김선환 (충남대학교병원 신경외과학) ;
  • 권현조 (충남대학교병원 신경외과학) ;
  • 고현송 (충남대학교병원 신경외과학) ;
  • 송시헌 (충남대학교병원 신경외과학) ;
  • 권기상 (충남대학교 의학전문대학원 해부학교실) ;
  • 권오유 (충남대학교 의학전문대학원 해부학교실) ;
  • 최승원 (충남대학교병원 신경외과학)
  • Received : 2010.08.23
  • Accepted : 2010.10.23
  • Published : 2010.12.30

Abstract

Cobalt(II) chloride, a chemical compound with the formula$CoCl_2$, has been widely used in the treatment of anemia, as a chemical agent for the induction of hypoxia in cell cultures, and is known to activate hypoxic signaling. However, excessive exposure to cobalt is associated with several clinical conditions, including asthma, pneumonia, and hematological abnormalities, and can lead to tissue and cellular toxicity. It is also known to induce apoptosis. One of the questions was that of whether $CoCl_2$ might induce apoptosis via endoplasmic reticulum (ER) stress in neurons. To address this question, first, the level of DNA fragmentation was measured for assay of apoptotic rates using $CoCl_2$ with neuron PC12 cells. After confirmation of apoptosis inductions, under the same conditions, the expression levels of ER stress associated factors [ER chaperones Bip, calnexin, ERp72, ERp29, PDI, and ER membrane kinases (IRE1, ATF6, PERK)] were examined by RT-PCR and Western blotting. These results indicated that apoptosis is induced through activation of ER membrane kinases via ER stress. In conclusion, during induction of apoptosis through $CoCl_2$-induced hypoxia in neuron PC12 cells, ER membrane kinase of IRE1 was dominantly up-expressed, and, consecutively, TRAF2, which has been suggested to be one of the links connecting apoptosis and ER stress, was strongly up-expressed.

PC12 세포에서 $CoCl_2$에 의한 hypoxia 유도는 HIF1 alpha의 상승 발현으로 확인하였다. 이때 apoptosis의 유도는 genomic DNA의 fragmentation과 apoptotic body는 Hoechst 염색으로 확인되었고, ER luminal chaperone의 발현 및 ER stress signal에 관여하는 ER membrane kinase인 IRE1, PERK, ATF6의 발현도 확인되었다. 이들이 apoptosis로 연결되는 고리 역할을 하는 IRE1-XBP1 mRNA splicing, PERK-eIF2 alpha, ATF6 protein cleavage도 반응하는 것으로 확인되었다. 위의 결과는 신경세포의 hypoxia상태는 ER stress signal pathway를 거쳐서 apoptosis가 된다는 것을 증명한 것으로 신경세포의 hypoxia치료를 위한 기초 자료가 될 것으로 생각한다.

Keywords

References

  1. Bartolome, S., N. K. Dhillon, S. Buch, A. J. Casillan, J. G. Wood, and A. R. O'Brien-Ladner. 2009. Deferoxamine mimics the pattern of hypoxia-related injury at the microvasculature. Shock 31, 481-485. https://doi.org/10.1097/SHK.0b013e318188db14
  2. Broughton, B. R., D. C. Reutens, and C. G. Sobey. 2009. Apoptotic mechanisms after cerebral ischemia. Stroke 40, 331-339. https://doi.org/10.1161/STROKEAHA.108.531632
  3. Gjymishka, A., N. Su, and M. S. Kilberg. 2009. Transcriptional induction of the human asparagine synthetase gene during the unfolded protein response does not require the ATF6 and IRE1/XBP1 arms of the pathway. Biochem. J. 417, 695-703. https://doi.org/10.1042/BJ20081706
  4. Goldberg, M. A., S. P. Dunning, and H. F. Bunn. 1988. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412-1415. https://doi.org/10.1126/science.2849206
  5. Gong, Y., J. Wu, Y. Huang, S. Shen, and X. Han. 2009. Nonylphenol induces apoptosis in rat testicular Sertoli cells via endoplasmic reticulum stress. Toxicol. Lett. 186, 84-95. https://doi.org/10.1016/j.toxlet.2009.01.010
  6. Henshall, D. C. 2007. Apoptosis signalling pathways in seizure-induced neuronal death and epilepsy. Biochem. Soc. Trans. 35, 421-423. https://doi.org/10.1042/BST0350421
  7. Hirsch, C., R. Gauss, S. C. Horn, O. Neuber, and T. Sommer. 2009. The ubiquitylation machinery of the endoplasmic reticulum. Nature 458, 453-460. https://doi.org/10.1038/nature07962
  8. Kim, I., W. Xu, and J. C. Reed. 2008. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug. Discov. 7, 1013-1030. https://doi.org/10.1038/nrd2755
  9. Kim, S. W., S. P. Chung, S. H. Kim, J. S. Choi, K. Kwon, and O. Y. Kwon. 2007. Ischemia-responsive protein (irp94) gene expression in neurons. Z. Naturforsch [C] 62, 592-596.
  10. Lai, E., T. Teodoro, and A. Volchuk. 2007. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22, 193-201. https://doi.org/10.1152/physiol.00050.2006
  11. Loos, B., and A. M. Engelbrecht. 2009. Cell death: A dynamic response concept. Autophagy 5, 590-603. https://doi.org/10.4161/auto.5.5.8479
  12. Mates, J. M., J. A. Segura, F. J. Alonso, and J. Marquez. 2006. Pathways from glutamine to apoptosis. Front Biosci. 11, 3164-3180 https://doi.org/10.2741/2040
  13. Mori, K. 2004. Unfolded protein response as a quality control mechanism of proteins. Tanpakushitsu Kakusan Koso 49, 992-997.
  14. Ni, M. and A. S. Lee. 2007. ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641- 3651. https://doi.org/10.1016/j.febslet.2007.04.045
  15. Nishikawa, S., J. L. Brodsky, and K. Nakatsukasa. 2005. Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J. Biochem. 137, 551-555. https://doi.org/10.1093/jb/mvi068
  16. Przedborski, S. 2004. Programmed cell death in amyotrophic lateral sclerosis: a mechanism of pathogenic and therapeutic importance. Neurologist 10, 1-7. https://doi.org/10.1097/01.nrl.0000106920.84668.37
  17. Raven, J. F. and A. E. Koromilas. 2008. PERK and PKR: old kinases learn new tricks. Cell Cycle 7, 1146-1150. https://doi.org/10.4161/cc.7.9.5811
  18. Ron, D. and S. R. Hubbard. 2008. How IRE1 reacts to ER stress. Cell 132, 24-26. https://doi.org/10.1016/j.cell.2007.12.017
  19. Schroder, M. and R. J. Kaufman. 2006. Divergent roles of IRE1alpha and PERK in the unfolded protein response. Curr. Mol. Med. 6, 35-36.
  20. Singh, S. and M. Dikshit. 2007. Apoptotic neuronal death in Parkinson's disease: involvement of nitric oxide. Brain Res. Rev. 54, 233-250. https://doi.org/10.1016/j.brainresrev.2007.02.001
  21. Sun, Y. and Z. L. Peng. 2009. Programmed cell death and cancer. Postgrad. Med. J. 85, 134-140. https://doi.org/10.1136/pgmj.2008.072629
  22. Wang, G., T. K. Hazra, S. Mitra, H. M. Lee, and E. W. Englander. 2000. Mitochondrial DNA damage and a hypoxic response are induced by $CoCl(_2) $in rat neuronal PC12 cells. Nucleic Acids Res. 28, 2135-2140. https://doi.org/10.1093/nar/28.10.2135
  23. Wang, Y., K. S. Lam, M. H. Yau, and A. Xu. 2008. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem. J. 409, 623-633. https://doi.org/10.1042/BJ20071492
  24. Yoshida, H. 2007. ER stress and diseases. FEBS J. 274, 630-658. https://doi.org/10.1111/j.1742-4658.2007.05639.x
  25. Zeno, S., M. Zaaroor, S. Leschiner, L. Veenman, and M. Gavish. 2009. $CoCl(_2) $ Induces Apoptosis via the 18 kDa Translocator Protein in U118MG Human Glioblastoma Cells. Biochemistry 48, 4652-4661. https://doi.org/10.1021/bi900064t
  26. Zhao, L. and S. L. Ackerman. 2006. Endoplasmic reticulum stress in health and disease. Curr. Opin. Cell Biol. 18, 444-452. https://doi.org/10.1016/j.ceb.2006.06.005
  27. Zhu, X., A. K. Raina, G. Perry, and M. A. Smith. 2006. Apoptosis in Alzheimer disease: a mathematical improbability. Curr. Alzheimer Res. 3, 393-396. https://doi.org/10.2174/156720506778249470