본 논문에서는 모션인식을 활용한 Human UI/UX를 위한 IoT 기반 스마트헬스 서비스를 제안한다. 현재까지 M2M기반의 u-healthcare에서 적용되는 센서 네트워크에서는 TCP/IP 프로토콜이 아닌 non-IP프로토콜을 이용하고 있다. 그러나 서비스의 이용 확대와 IoT 기반의 센서 네트워크 관리를 용이하게 하기 위해서는 다수의 센서들의 인터넷 연결이 반드시 요구된다. 따라서 센서들에 의하여 측정된 자료들을 인터넷과 통신하는 것은 물론 이동이 가능해야 하기 때문에 네트워크 이동성을 고려한 IoT 기반 스마트헬스 서비스를 설계하였다. 또한 IoT 기반 스마트헬스 서비스는 기존의 헬스케어 플랫폼과는 다르게 바이오 정보뿐만이 아니라 동작감지를 위한 스마트 헬스 서비스를 개발하였다. u-healthcare에서 사용되는 WBAN 통신은 일반적으로 많은 네트워크화된 장치 및 게이트웨이로 구성된다. 본 논문에서 제안하는 방법은 WBAN 센서 노드간의 이동성을 지원하는 기술을 이용함으로써 무선 환경에서도 동적 변화에 쉽게 대응할 수 있고, 사용자의 동작감지를 통해 체계적인 관리가 이루어진다.
피처폰에서 스마트폰으로의 모바일 혁명과 All IP기반의 Network는 IT 생태계 변화에 있어 통신산업을 비롯하여 모든 산업분야의 변화를 촉구해 왔다. 하룻동안 구글의 Play store에 등록되는 앱의 수와 개통되는 안드로이드 기그들은 수십 만개에 달하고 스마트폰은 이제 단순한 사람과 사람과의 통신의 수단이 아닌 나와 연결된 모든 사물과 통신하기 위한 수단이 되고 있다. 이러한 폭발적인 모바일 성장과 함께 통신회사들도 자신들의 강점인 유무선 통합을 기반으로 사업을 확대하거나 신성장 동력을 찾으려는 많은 시도를 해왔다. LG 유플러스도 이러한 변화의 소용돌이를 극복하기 위해 과거 LG텔레콤, LG데이콤, LG파워콤의 3사 합병의 조직 변화를 시도했고, 유무선 네트워크 기반의 인프라를 중심으로 다양한 서비스 플랫폼을 구축하고 있으며, 이를 기반으로 다양한 서비스의 기획에서 상용화까지 경쟁력 있는 서비스를 쉽고 빠르게 제공할 수 있도록 하고 있다. 또한 플랫폼과 서비스, 플랫폼과 플랫폼간의 유기적인 연동을 통해 보다 차별화된 융합서비스와 개방형 API으로 누구나 쉽게 자사의 플랫폼과 서비스 기능을 사용할 수 있도록 생태계 조성에 힘을 쓰고 있다. 본 고에서는 LG U+의 플랫폼과 서비스 중 M2M분야에 대해 알아보고, M2M/IoT에서의 다양한 활동을 통해 LG U+가 바라보는 M2M/IoT의 미래를 조명해 보고자 한다.
이동통신사 주도의 LPWA(Low Power Wide Area) 기반 IoT 기술은 NB-IoT와 LTE Cat.M1이 상용화되어 서비스되고 있다. LPWA 기반 IoT에 대한 서비스 요구사항이 증가되면서 이러한 서비스 가입자도 증가하고 있는 상황이다. 서비스 초기에는 NB-IoT 및 LTE Cat.M1을 수용하기 위한 기지국 용량에 이슈가 없었으나, 가입자 증가로 하나의 셀에서 수용하기 위한 용량이 부족해지는 문제가 발생하고 있다. 이러한 Active UE 용량 문제는 지속적인 증가로 인한 과부하와 일시적인 증가로 인한 과부하 문제가 발생할 수 있다. 본 논문에서는 기지국에서 NB-IoT 및 LTE Cat.M1 단말의 일시적인 증가로 인해 발생 하는 LTE 접속제어 채널인 RRC(Radio Resource Control) Active UE 용량 부족 및 기지국 과부하 문제를 해결하기 위한 방안을 제시한다. 제시한 방안은 이동통신의 셀 분할 및 추가 기지국 투자 없이 셀 용량을 증대 시킬 수 있는 방안을 제시함으로써, 증가하는 IoT 단말을 수용해 서비스 성능을 개선시킨다.
In this paper, we developed a deep learning-based recyclable object detection model. The model is developed based on YOLOv5 that is a one-stage detector. The deep learning model detects and classifies the recyclable object into 7 categories: paper, carton, can, glass, pet, plastic, and vinyl. We propose two methods for recyclable object detection models to solve problems during training. Bounding Box CutMix solved the no-objects training images problem of Mosaic, a data augmentation used in YOLOv5. Standardized Distance-based IoU replaced DIoU using a normalization factor that is not affected by the center point distance of the bounding boxes. The recyclable object detection model showed a final mAP performance of 0.91978 with Bounding Box CutMix and 0.91149 with Standardized Distance-based IoU.
IoU (Intersection over Union) is the most commonly used index in target detection. The core requirement of target detection is what is in the image and where. Based on these two problems, classification training and positional regression training are needed. However, in the process of position regression, the most commonly used method is to obtain the IoU of the predicted bounding box and ground-truth bounding box. Calculating bounding box regression losses should take into account three important geometric measures, namely the overlap area, the distance, and the aspect ratio. Although GIoU (Generalized Intersection over Union) improves the calculation function of image overlap degree, it still can't represent the distance and aspect ratio of the graph well. As a result of technological progress, Bounding-Box is no longer represented by coordinates x,y,w and h of four positions. Therefore, the IoU can be further optimized with the center point and aspect ratio of Bounding-Box.
인공위성이 촬영한 영상의 내용을 정확하게 분석하기 위해서는 영상에 존재하는 구름 영역을 정확하게 인지하는 것이 필요하다. 최근 다양한 분야에서 딥러닝(deep learning) 모델이 뛰어난 성능을 보여줌에 따라 구름 영역 검출을 위해 딥러닝 모델을 적용한 방법들이 많이 제안되고 있다. 하지만 현재 구름 영역 검출 방법들은 의미 영역 분할 방법의 네트워크 구조를 그대로 사용하여 구름 검출 성능을 향상하는 데는 한계가 있다. 따라서 본 논문에서는 구름 검출 데이터 세트에 다중 브랜치 네트워크 구조 탐색을 적용하여 구름 영역 검출에 최적화된 네트워크 모델을 생성함으로써 구름 검출 성능을 향상하는 방법을 제안한다. 또한 구름 검출 성능을 향상하기 위하여 의미 영역 분할 모델의 학습 단계와 평가 단계의 평가 기준 불일치를 해소하기 위해 제안된 soft intersection over union (IoU) 손실 함수를 사용하고, 다양한 데이터 증강 방법을 적용하여 학습 데이터를 증가시켰다. 본 논문에서 제안된 방법의 성능을 검증하기 위하여 아리랑위성 3/3A호에서 촬영한 영상으로 구성된 구름 검출 데이터 세트를 사용하였다. 먼저 제안 방법과 의미 영역 분할 데이터 세트에서 탐색된 기존 네트워크 모델의 성능을 비교하였다. 실험 결과, 제안 방법의 mean IoU는 68.5%이며, 기존 모델보다 mIoU 측면에서 4%의 높은 성능을 보여주었다. 또한 soft IoU 손실 함수를 포함한 다섯 개의 손실 함수를 적용하여 손실 함수에 따른 구름 검출 성능을 분석하였으며, 실험 결과 본 연구에서 사용한 soft IoU 함수가 가장 좋은 성능을 보여주었다. 마지막으로 의미 영역 분할 분야에서 활용되는 최신 네트워크 모델과 제안 방법의 구름 검출 성능을 비교하였다. 실험 결과, 제안 모델이 의미 영역 분할 분야의 최신 모델들보다 mIoU와 정확도 측면에서 더 나은 성능을 보여주는 것을 확인하였다.
본 연구에서는 단시간 내 광범위한 지역에 대한 해양쓰레기 발생 실태 파악이 가능하도록 위성 및 드론다중분광 영상을 이용한 해안쓰레기 모니터링 기법을 제안한다. Sentinel-2 위성 영상을 이용한 해안쓰레기 탐지를 위해 multi-layer perceptron (MLP) 모델을 적용하였고, 드론 다중분광 영상을 이용한 해안쓰레기 탐지를 위해 딥러닝 모델 중 U-Net, DeepLabv3+ (ResNet50), DeepLabv3+ (Inceptionv3)의 탐지 성능평가 및 비교를 수행하였다. 위성 영상을 이용한 해안쓰레기 탐지 결과 F1-Score 0.97을 보였다. 드론 다중분광 영상을 이용한 해안쓰레기 탐지는 초목류와 플라스틱류에 대한 탐지를 수행하였고, 탐지 결과 DeepLabv3+ (Inceptionv3) 모델이 mean Intersection over Union (mIoU) 0.68로 가장 우수한 성능을 보였다. 초목류는 F1-Score 0.93, IoU는 0.86을 보인 반면에 플라스틱류의 F1-Score 0.5, IoU는 0.33으로 낮은 성능을 보였다. 그러나 플라스틱류 마스크 영상 생성을 위해 적용된 분광 지수식의 F1-Score는 0.81로 DeepLabv3+ (Inceptionv3)의 플라스틱류 탐지 성능보다 높은 성능을 보이며, 분광 지수식을 이용한 플라스틱류 모니터링이 가능할 것으로 판단된다. 본 연구에서 제안된 해안쓰레기 모니터링 기법을 통해 해안쓰레기 발생에 대한 정량적 자료 제공과 더불어 해안쓰레기 수거·처리 계획 수립에 활용할 수 있다.
본고에서는 M2M/IoT 통신의 실현을 위한 무선 통신망 기술을 알아보고 IoT 통신을 위한 요구사항과 이를 해결하기 위한 연구 동향을 살펴본다. 특히, 많은 수의 IoT 디바이스가 싱크 노드를 이용하여 IP 망에 접속하는 Wireless Sensor network(WSN)에서의 문제와, LTE-A와 같은 cellular 망을 이용하여 접속하는 IoT 서비스로 나누어 논의한다. WSN관점에서는 에너지에 대한 제약이 심한 환경을 고려하여 발생할 수 문제점들을 분류하고 이에 대한 다양한 해결책을 제시하며, Cellular 망에서는 현재의 LTE-A 망에 많은 수의 IoT 디바이스가 연결될 경우 발생할 수 있는 문제점들을 논하고 기존의 통신에 영향을 최소화 하며 IoT 서비스를 공존할 수 있는 연구 동향을 논한다.
In surgery to remove pancreatic cancer, it is important to figure out the shape of a patient's pancreas. However, previous studies have a limit to detect a pancreas automatically in abdominal CT images, because the pancreas varies in shape, size and location by patient. Therefore, in this paper, we propose a method of learning various shapes of pancreas according to the patients and adjacent slices using Faster R-CNN based on Inception V2, and automatically detecting the pancreas from abdominal CT images. Model training and testing were performed using the NIH Pancreas-CT Dataset, and intensity normalization was applied to all data to improve pancreatic detection accuracy. Additionally, according to the shape of the pancreas, the test dataset was classified into top, middle, and bottom slices to evaluate the model's performance on each data. The results show that the top data's mAP@.50IoU achieved 91.7% and the bottom data's mAP@.50IoU achieved 95.4%, and the highest performance was the middle data's mAP@.50IoU, 98.5%. Thus, we have confirmed that the model can accurately detect the pancreas in CT images.
Ta, Quoc-Bao;Pham, Quang-Quang;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
Structural Monitoring and Maintenance
/
제9권3호
/
pp.289-303
/
2022
In this study, the impact of assigned pixel labels on the accuracy of crack image identification of steel structures is examined by using an atrous separable convolution neural network (ASCNN). Firstly, images containing fatigue cracks collected from steel structures are classified into four datasets by assigning different pixel labels based on image features. Secondly, the DeepLab v3+ algorithm is used to determine optimal parameters of the ASCNN model by maximizing the average mean-intersection-over-union (mIoU) metric of the datasets. Thirdly, the ASCNN model is trained for various image sizes and hyper-parameters, such as the learning rule, learning rate, and epoch. The optimal parameters of the ASCNN model are determined based on the average mIoU metric. Finally, the trained ASCNN model is evaluated by using 10% untrained images. The result shows that the ASCNN model can segment cracks and other objects in the captured images with an average mIoU of 0.716.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.