• Title/Summary/Keyword: m-PID Controller

Search Result 95, Processing Time 0.022 seconds

A Design of 2 DOF PID Controller Using Performance Index (평가지표를 이용한 2자유도 PID제어기 설계)

  • 유항열;이정국;이금원;이준모
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • PID control has been well used for several decades. For PID algorithms, some tuning methods are used for selecting PID parameters and with these selected parameters, PID control system is designed. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that the designed control system meets the some specifications. For 2 DOF PID controller design this paper presents a linear combinational type of performance indices constituting of index for robust performance, which is obtained by h infinity norm of a weighted complementary sensitivity function, including other time domain indices such as error, energy and changing rate of control input. By numerical methods, the optimal 2 DOF PID parameters are obtained. Therefore various types of 2 degree of freedom PID controllers such as I-PD controller are used so that this two degree of freedom PID controllers may give more desirable output characteristics. Simulations are done with MATLAB m file and mdl files.

  • PDF

Paper Machine Industrial Analysis on Moisture Control Using BF-PSO Algorithm and Real Time Implementation Setup through Embedded Controller

  • Senthil Kumar, M.;Mahadevan, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.490-498
    • /
    • 2016
  • Proportional Integral Derivative (PID) controller tuning is an area of interest for researchers in many areas of science and engineering. This paper presents a new algorithm for PID controller tuning based on a combination of bacteria foraging and particle swarm optimization. BFO algorithm has recently emerged as a very powerful technique for real parameter optimization. To overcome delay in an optimization, combine the features of BFOA and PSO for tuning the PID controller. This new algorithm is proposed to combine both the algorithms to get better optimization values. The real time prototype model of paper machine is designed and controlled by using PIC microcontroller embedded with the programming in C language.

Design and Analysis of a Control System for Variable-Rate Application of Granular Fertilizers (입제 비료 변량 살포 제어시스템의 분석 및 설계)

  • Kim Y.H.;Rhee J.Y.;Kim Y.J.;Yu J.H.;Ryu K.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.203-208
    • /
    • 2006
  • This study was conducted to improve the control performance of a current variable-rate controller for granular fertilizers. Simulation model was developed. Optimized proportional, integral and derivative gains were determined by simulation model using 2nd order PID gain learning algorithm, and these control gains were evaluated through the field tests. Important results of this study are as follows; 1. Principles of pre-existing variable-rate application of granular fertilizers were investigated. 2. Simulation model of a PID controller that could simulate the control system was developed by using Matlab/Simulink program. The program was to determine PID control coefficients through the simulation model and 2nd order PID gain learning algorithm. 3. PID control coefficients obtained from the simulation were applied to the developed model. When the step input was given, Maximum overshoot were 1.96%, rise time were 0.05 sec, settling time were 0.06 sec and steady state error were 0.21 % respectively. 4. The simulation model was verified through field tests. The errors of maximum overshoot were 10%, rise time were 0.11 sec, settling time were 0.40 sec and steady state error were 8% because of loads and noises. Rise time was decreased to one third of that of the pre-existing system. 5. If the speed of a fertilizing machine is $0.3{\sim}0.6\;m/s$ and the maximum rotation speed of a discharging roller is 64 rpm, rise time would be 0.26 sec and fertilizing machine would cover the distance of $0.07{\sim}0.15\;m$ with settling time of 0.4 sec, fertilizing machine would cover the distance of $0.12{\sim}0.24\;m$.

Water Level Intelligent Controller Design of Power Plant Drum (발전기 드럼의 수위 지능 제어기 설계)

  • Hong, Hyun-Mun;Lee, Bong-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.271-274
    • /
    • 2007
  • In this paper, we propose a intelligent controller design method for the water level control of the power plant drum in the form of nonminimum phase system. The proposed method is based on T. Takagi and M. Sugeno's fuzzy model. And we illustrate the improved characteristics as the simulation results, comparing with the conventional the PID and LQ controller design method.

  • PDF

Stable PID Tuning for Integrating Processes using sensitive function $M_{s}$ (적분공정을 위한 민감도 함수 $M_{s}$를 이용한 안정된 PID 동조)

  • Lee, Won-Hyok;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.61-66
    • /
    • 2007
  • PID control is windely used to control stable processes, however, its application to integrating processes is less common. In this paper we proposed a simple PID controller tuning method for integrating processes with time delay to meet a stable specification. With the proposed PID tuning method, we can obtain stable integrating processes using PD controller in inner feedback loop and a loop transfer function with desired stable specification. This guarantees bout robustness and performance. Simulation examples are given to show the good performance of the proposed tuning method to other methods.

Position Control of Electro Hydraulic Actuator (EHA) using an Iterative Learning Control (반복 학습제어를 이용한 전기유압액추에이터의 위치제어)

  • Nam, D.N.C.;Tri, N.M.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents the development of a compact position generator to be used for industrial purposes based on a pump controlled Electro-Hydraulic Actuator (EHA), which is closed-loop controlled by an embedded based Iterative PID controller. The controller is designed by combining the PID controller and the iterative learning scheme to perform tracking control for periodically desired references. Control algorithm is implemented on an embedded computer (AD 7011-EVA) which makes the implementation and application in industrial environments easier.

A nonlinear PID control of winding tension using contact roll (접압롤을 이용한 권취장력의 비선형 PID 제어)

  • Shin, K.H;Kim, K.T;Cheon, S.M
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2029-2037
    • /
    • 1997
  • In a web winding process, the contact roll plays many important roles including air-entrainment control and WIT(Wound In Tension) regulation. The behavior of contact roll significantly affects the winding tension characteristics specifically at the time of contact when the speeds of contact roll and the winding roll are not synchronized. A mathematical model for the web, the winding roll, and the contact roll is derived. By using the model derived, a nonlinear PID(NPID) controller is designed to control the winding tension at the time of contact and separation between the contact roll and the winding roll. Computer simulation study showed that the performance of the winding system with the NPID controller significantly improved compared with that of a system with PID controller.

Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller

  • Muthalif, Asan G.A.;Kasemi, Hasanul B.;Nordin, N.H. Diyana;Rashid, M.M.;Razali, M. Khusyaie M.
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • The aim of this research is to develop a new method to use magnetorheological (MR) damper for vibration control. It is a new way to achieve the MR damper response without the need to have detailed constant parameters estimations. The methodology adopted in designing the control structure in this work is based on the experimental results. In order to investigate and understand the behaviour of an MR damper, an experiment is first conducted. Force-displacement and force-velocity responses with varying current have been established to model the MR damper. The force for upward and downward motions of the damper piston is found to be increasing with current and velocity. In cyclic motion, which is the combination of upward and downward motions of the piston, the force with hysteresis behaviour is seen to be increasing with current. In addition, the energy dissipated is also found to be linear with current. A proportional-integral-derivative (PID) controller, based on the established characteristics for a quarter car suspension model, has been adapted in this study. A fuzzy rule based PID controller (F-PID) is opted to achieve better response for a varying frequency input. The outcome of this study can be used in the modelling of MR damper and applied to control engineering. Moreover, the identified behaviour can help in further development of the MR damper technology.

A study on load frequency control characteristics of power systems using IA-PID controller (IA-PID 제어기를 이용한 전력시스템의 부하주파수 제어 특성에 관한 연구)

  • Kim, C.H.;Lee, J.P.;Mun, M.K.;Chung, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.116-119
    • /
    • 2001
  • In this paper. the robust PID controller using immune algorithm(IA) for load frequency control(LFC) is designed. In proposed method. objective function is represented as antigens. An affinity calculation is embedded within the algorithm for determining the promotion or suppression of antibody. Simulation results show that the proposed robust load frequency controller can achieve good performance even in the presence of generation rate constraints.

  • PDF