• Title/Summary/Keyword: lyapunov

Search Result 1,468, Processing Time 0.022 seconds

Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

  • Zhou, Jiajia;Ye, Dingqi;Zhao, Junpeng;He, Dongxu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.282-293
    • /
    • 2018
  • This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV) using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances.

Decentralized Control of Multiple Agents for Optimizing Target Tracking Performance and Collision Avoidance (표적 추적 성능 최적화 및 충돌 회피를 위한 다수 에이전트 분산 제어)

  • Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.693-698
    • /
    • 2016
  • A decentralized control method is proposed to enable a group of robots to achieve maximum performance in multisensory target tracking while avoiding collision with the target. The decentralized control was designed based on navigation function formalism. The study showed that the multiple agent system converged to the positions providing the maximum performance by the decentralized controller, based on Lyapunov and Hessian theory. An exemplary simulation was given for a multiple agent system tracking a stationary target.

Adaptive Control of Switched Reluctance Motor Drives under Variable Torque Applications

  • Namazi, Mohammad Masoud;Rashidi, Amir;Koofigar, Hamidreza;Saghaiannejad, Seyed Morteza;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.134-144
    • /
    • 2017
  • This paper presents an adaptive control strategy for the speed control of a four-phase switched reluctance motor (SRM) in automotive applications. The main objective is to minimize the torque ripples, despite the unstructured uncertainties, time-varying parameters and external load disturbances. The bound of perturbations is not required to be known in the developing of the proposed adaptive-based control method. In order to achieve a smooth control effort, some properties are incorporated and the proposed control algorithm is constructed using the Lyapunov theorem where the closed-loop stability and robust tracking are ensured. The effectiveness of the proposed controller in rejecting high perturbed load torque with smooth control effort is verified with comparing of an adaptive sliding mode control (ASMC) and validated with experimental results.

Robust Switching-Type Fuzzy-Model-Based Output Tracker

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.411-418
    • /
    • 2005
  • This paper discusses an output-tracking control design method for Takagi-Sugeno fuzzy systems with parametric uncertainties. We first represent the concerned system as a set of uncertain linear systems. The tracking problem is then converted into a stabilization problem thereby leading to a more feasible control design procedure. A sufficient condition for robust practical output tracking is derived in terms of a set of linear matrix inequalities. A numerical example for a flexible-joint robot-arm model has been demonstrated, to convincingly show effectiveness of the proposed system modeling and control design.

A Switching Controller for Stabilization of Uncertain Linear Systems (불확실한 선형시스템의 안정화를 위한 스위칭제어기)

  • Kim, Jung-Soo;Kim, Byung-Yeun;Lyon, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.382-385
    • /
    • 1991
  • In order to stabilize linear time-invariant systems with the unknown system matrix, a piecewise constant linear state feedback control law including switching logic is developed. A number of feedback gain matrices are first precomputed by solving the Algebraic Riccati Equation with prescribed degree of stability, and then are switched over in a direction to increase degree of stability. Switching stops when a Lyapunov function shows the decreasing property, and hence switching times are finite.

  • PDF

A Robust Controller Design for Manipulators using Time-Varying Sliding Manifolds (시변 스위칭 평면을 이용한 로보트 매니퓰레이터의 견실한 제어기의 설계)

  • Park, Gwi-Tae;Kim, Dong-Sik;Lim, Sung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.391-395
    • /
    • 1990
  • A new control algorithm is developed to achieve the robust performance of the system during the overall control process. Time-varying sliding manifolds are proposed to remove the reaching phase which is one of common shortcomings of variable structure control scheme. A necessary and sufficient condition for the existence of a sliding mode on the newly proposed time-varying sliding mode on the newly proposed time-varying sliding manifolds is derived by Lyapunov's second method. The digital simulation results show that the newly proposed control algorithm is superior to the typical variable structure control algorithm with respect to the robust performance of the system. The simplicity of the proposed control algorithm encourages control engineers to implement the proposed control algorithm in many control problems.

  • PDF

Sensorless control of IPMSM using an adaptive sliding mode observer (적응 슬라이딩 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 제어)

  • Kim, Won-Seok;Kang, Hyong-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.216-218
    • /
    • 2006
  • In this paper, a new sensorless control based on an adaptive sliding mode observer is proposed for the interior permanent magnet synchronous motor(IPMSM) drives. With using voltage equation only, the adaptive sliding mode observer was investigated. The proposed adaptive sliding mode observer is applied to overcome the problem caused by using the dynamic equation. Furthermore, the Lyapunov theorem is used to prove the system stability included speed estimate and speed control. The effectiveness of the proposed algorithm is confirmed by the experiments.

  • PDF

Static Output Feedback Robust $H_{\infty}$ Fuzzy Control of Nonlinear Systems with Time-Varying Delay (시변 지연이 있는 비선형 시스템에 대한 $H_{\infty}$ 퍼지 강인제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.379-381
    • /
    • 2004
  • In this paper, a robust $H_{\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-varying delayed state. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H_{\infty}$ controllers are given in terms of linear matrix inequalities.

  • PDF

Delay dependent fuzzy $H_{\infty}$ control of delayed nonlinear systems with parameter uncertainty (파라미터 불확실성을 갖는 시간지연 비선형시스템의 지연종속 퍼지 $H_{\infty}$ 제어)

  • Lee, Kap-Rai;Kim, Tae-Sik;Lee, Hae-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.110-113
    • /
    • 2004
  • A delay dependent fuzzy $H_{\infty}$ controller design method for delayed nonlinear systems with parameter uncertainty is considered. Using delay-dependent Lyapunov function the asymptotical stability and $H_{\infty}$n performance problem :are discussed. A sufficient condition for the existence of fuzzy controller is presented in terms of linear matrix inequalities(LMIs). A simulation example through radar gimbal system is given to illustrate the design procedures and performances of the prosed methods.

  • PDF

On a Stability Region of Liner Time-Varying Systems (선형시변 시스템의 안정도 영역에 관하여)

  • 최종호;장태정
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.484-489
    • /
    • 1988
  • Sufficient conditions concerning the perturbation region of system parameters, which guarantee the asymptotic stability of linear time- varying systems, are presented. These conditions are obtained by Lyapunov function approach for continuous-time and discrete-time systems. Also, a computational algorithm using nonlinear programming is proposed for finding the maximum perturbation region which satisfies the sufficient condition for the continuous-time systems. The technique of finding the solution for the continuous-time systems can also be applied to the discrete-time systems. In the continuous-time case, it is shown by an example that the method proposed in this paper yields much larger perturbation region of parameters than other previously reported results. An example of the perturbation region of system paramters for the discrete-time system is also given.

  • PDF