• Title/Summary/Keyword: lyapunov

Search Result 1,468, Processing Time 0.024 seconds

Design of a robust $H_{\infty}$ controller with regional stability constraints for uncertain linear systems (불확실한 선형 시스템의 지역 안정 제한 조건을 가진 강인한 $H_{\infty}$제어기의 설계)

  • 이문노;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.747-750
    • /
    • 1996
  • This paper considers the problem of robust H$_{\infty}$ control with regional stability constraints via output feedback to assure robust performance for uncertain linear systems. A robust H$_{\infty}$ control problem and the generalized Lyapunov theory are introduced for dealing with the problem, The output feedback H$_{\infty}$ controller makes the controlled outputs settle within a given bound and the control input not to be saturated. The regional stability constraints problem for uncertain systems can be reduced to the problem for the nominal systems by finding sufficient bounds of variations of the closed-loop poles due to modeling uncertainties. A controller design procedure is established using the Lagrange multiplier method. The controller design technique was illustrated on the track-following system of a optical disk drive.ve.

  • PDF

Time-varying biased proportional navigation for terminal guidance with impact attitude angle constraint (충돌 자세각 제한조건을 갖는 종단 유도를 위한 시변 편향 비례항법)

  • 김병수;이보형;이장규;김삼수;조현진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.355-358
    • /
    • 1996
  • The primary objective of guidance system is to generate suitable commands so that the pursuer comes closer to its target. It is necessary, however, in the guidance of a certain pursuer that the attitude angle at impact should be within a prescribed range in addition to specification on the miss distance. These guidance requirements can not be satisfied by the general guidance laws developed for miss distance minimization. Compared with the demand in many applications, the guidance laws dealing with impact attitude angle constraint are not easily found. In this paper, biased PNG laws are proposed to obtain the guidance purposes. By Lyapunov method, it is shown that the pursuer can intercept the target with a prescribed attitude angle under the assumption that the pursuer is sufficiently fast and the target maneuver is negligible. The simulation results are presented to demonstrate the performance of the suggested guidance laws.

  • PDF

Control of Nonlinear System with a Disturbance Using Multilayer Neural Networks

  • Seong, Hong-Seok
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-195
    • /
    • 2000
  • The mathematical solutions of the stability convergence are important problems in system control. In this paper such problems are analyzed and resolved for system control using multilayer neural networks. We describe an algorithm to control an unknown nonlinear system with a disturbance, using a multilayer neural network. We include a disturbance among the modeling error, and the weight update rules of multilayer neural network are derived to satisfy Lyapunov stability. The overall control system is based upon the feedback linearization method. The weights of the neural network used to approximate a nonlinear function are updated by rules derived in this paper . The proposed control algorithm is verified through computer simulation. That is as the weights of neural network are updated at every sampling time, we show that the output error become finite within a relatively short time.

  • PDF

Boundary Control of a Tensioned Elastic Axially Moving String

  • Kim, Chang-Won;Hong, Keum-Shik;Park, Hahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2260-2265
    • /
    • 2005
  • In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string are described by a non-linear partial differential equation coupled with an ordinary differential equation. A time varying control in the form of right boundary transverse motions is proposed in stabilizing the transverse vibrations of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the closed-loop system is verified. The effectiveness of the proposed controller is shown through simulations.

  • PDF

Robust D-Stability and D-Stabilization of Dynamic Interval Systems

  • Mao, Wei-Jie;Chu, Jian
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • A sufficient condition for the robust D-stability of dynamic interval systems is proposed in this paper. This D-stability condition is based on a parameter-dependent Lyapunov function obtained from the feasibility of a set of matrix inequalities defined at a series of partial-vertex-based interval matrices other than the total vertex matrices as previous results. This condition is also extended to the robust D-stabilization problem of dynamic interval systems, which supplies an effective synthesis procedure for any LMI D-region. The proposed conditions can be simplified to a set of LMIs, which can be solved by efficient interior point methods in polynomial time.

Output Feedback Control for Nonlinear System with Time Delay (시간지연을 갖는 비선형 시스템의 출력 피드백 제어)

  • Lee, Sungryul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.239-243
    • /
    • 2013
  • This paper presents the output feedback control design for triangular nonlinear systems with input delay. The proposed controller is composed of a high gain observer and a linear controller. It is shown that by using Lyapunov-Krasovskii theorem, the proposed controller ensures an asymptotic stability for sufficiently small input delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Adaptive Neural Network Control of a Flexible Joint Manipulator (유연관절로봇의 적응신경망제어)

  • 구치욱;이시복;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.101-106
    • /
    • 1997
  • This paper proposes a stable adaptive neural network control(NNC) for fixable joint manipulators. For designing the stable adaptive NNC, the flexible system dynamics is separated into fast and slow subdynamics according to singular perturbation concept. For the slow subdynamics, an adaptive NNC is designed to warrant the system stability and NN learning by lyapunov stability criterion. And to stabilize the fast dynamics, derivative control loop is installed. Through numerical simulation, the performance of the proposed NNC was compared to that of an adaptive controller designed based on the knowledge of the system dynamics. The proposed NNC shows much improvement over the conventional adaptive controller.

  • PDF

H-infinity Discrete Time Fuzzy Controller Design Based on Bilinear Matrix Inequality

  • Chen M.;Feng G.;Zhou S.S.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2006
  • This paper presents an $H_{\infty}$ controller synthesis method for discrete time fuzzy dynamic systems based on a piecewise smooth Lyapunov function. The basic idea of the proposed approach is to construct controllers for the fuzzy dynamic systems in such a way that a Piecewise smooth Lyapunov function can be used to establish the global stability with $H_{\infty}$ performance of the resulting closed loop fuzzy control systems. It is shown that the control laws can be obtained by solving a set of Bilinear Matrix Inequalities (BMIs). An example is given to illustrate the application of the proposed method.

A Study on Extracting Characteristics of High Impedance Fault-Current Based on Chaotic Analysis. (카오스 해석에 기초한 고저항 고장전류의 특징 추출에 관한 연구)

  • 배영철;고재호;임화영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.379-388
    • /
    • 2000
  • Previous studies on high impedance faults assumed that the erratic behavior of fault current would be random. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents, which represent geometrical self-similarity are calculated. In addition, qualitative analysis such as phase planes, Poincare maps obtained from fault currents indicate that the irregular behavior is described by strange attractor.

  • PDF

Nonfragile Guaranteed Cost Controller Design for Uncertain Large-Scale Systems (섭동을 갖는 대규모 시스템의 비약성 성능보장 제어기 설계)

  • Park, Ju-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.503-509
    • /
    • 2002
  • In this paper, the robust non-fragile guaranteed cost control problem is studied for a class of linear large-scale systems with uncertainties and a given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design a state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties and controller gain variations. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. A numerical example is given to illustrate the proposed method.