• 제목/요약/키워드: lyapunov

검색결과 1,470건 처리시간 0.022초

제어기의 이득 섭동을 갖는 이산 시간지연 대규모 시스템을 위한 강인 비약성 제어기 (Decentralized Stabilization for Uncertain Discrete-Time Large-Scale Systems with Delays in Interconnections and Controller Gain Perturbations)

  • 박주현
    • 전자공학회논문지SC
    • /
    • 제39권5호
    • /
    • pp.8-17
    • /
    • 2002
  • 본 논문에서는, 섭동과 제어기 이득 섭동을 갖는 이산 대규모 시간지연 시스템의 강인 비약성 제어기 설계에 관하여 논한다. 리아프보프 해석법을 의거하여 선형행렬 부등식으로 표현되는 주어진 시스템의 강인 안정화를 꾀하는 상태 궤환 제어기의 존재를 보장하는 조건 식을 구한다. 이 조건 식의 해로부터 각 부 시스템에서의 제어기의 이득 및 제어기의 비약성 지수도 얻을 수 있다. 제시된 선형행렬 부등식은 잘 알려진 최적화 기법으로 쉽게 풀 수 있으며, 예제를 통하여 제어기 설계 방법을 보인다.

비선형 시스템에서의 백스테핑 기법을 이용한 새로운 퍼지 외란 관측기 설계 (Novel Fuzzy Disturbance Observer based on Backstepping Method For Nonlinear Systems)

  • 백재호;이희진;박민용
    • 전자공학회논문지SC
    • /
    • 제47권2호
    • /
    • pp.16-24
    • /
    • 2010
  • 본 논문은 불특정한 외란을 가진 비선형 시스템에서의 백스태핑 기법을 이용한 새로운 퍼지 외란 관측가 설계 방법을 제안한다. 먼저, 퍼지 논리 시스템을 이용하여 불특정한 외란을 관측하기 위한 관측 입력을 가진 퍼지 외란 관측기를 설계한다. 제안된 외란 관측기가 불특정한 외란을 관측하는 것을 증명하기 위해 와란 관측 오차 시스템을 도입한다. 백스태핑 기법을 도입하여 각 단계에서의 퍼지 외란 관측기의 파라마터 적응 규칙과 외란 관측기의 관측 입력을 유도하고 외란 오차 시스템의 안정성을 증명한다. 제안된 외란 관측기의 명확성을 증명하기 위해서 모의 실험 예제들을 제공한다.

제어불가능 불안정 선형화를 가지는 비선형 시스템에 대한 다이나믹 안정화 (Dynamic Stabilization for a Nonlinear System with Uncontrollable Unstable Linearization)

  • 서상보;심형보;서진헌
    • 전자공학회논문지SC
    • /
    • 제46권4호
    • /
    • pp.1-6
    • /
    • 2009
  • 본 논문에서 우리는 비선형 시스템에 대한 다이나믹 스무스 상태 궤환 안정화기를 설계한다. 이 시스템은 우반평면에 고유값이 존재함으로 제어불가능 모드를 가질 수 있다. 이 시스템을 지수적으로 안정화하기 위해서 우리는 추가 다이나믹스를 고려한 다이나믹 제어기를 제안한다. 추가 다이나믹스의 설계 후에 다이나믹 차수 보정법과 역진기법을 이용하여 안정화기와 미분 가능, positive definite, proper인 리아푸노프 함수를 설계한다. 설계된 제어기의 수렴성은 차수 지표자라는 새로운 개념의 도입으로 증명될 것이다.

제조공정자동화를 위한 다관절 아암의 정밀위치제어에 관한 연구 (A Study on Precise Position Control of Articulated Arm for Manufacturing Process Automation)

  • 박인만;구영목;조상영;양준석
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.181-190
    • /
    • 2015
  • This paper presents a new approach to control the position of robot arm in workspace a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme was applied. Since parameters of the robot arm such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters was considered as a external disturbance force. To identify the known parameters, an improved robust control algorithm is directly derived from the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing forces coming from the difference between the actual and the estimated system parameters. Numerical examples are shown using SCARA arm with four joints.

A study on Real-Time Implementation of Robust Control for Horizontal Articulated Arm with Eight Axis

  • 노연 후 콩;김준홍;이희섭
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.139-149
    • /
    • 2015
  • In this paper, we describe a new approach to perform real-time implementation of an robust controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for robot manipulator consisting of dual arm with eight degrees of freedom at the joint space and cartesian space.

Quasi-LQG/$H_{infty}$/LTR Control for a Nonlinear Servo System with Coulomb Friction and Dead-zone

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.24-34
    • /
    • 2000
  • In this paper we propose a controller design method, called Quasi-LQG/$H_{\infty}$/LTR for nonlinear servo systems with hard nonlinearities such as Coulomb friction, dead-zone. Introducing the RIDF method to model Coulomb friction and dead-zone, the statistically linearized system is built. Then, we consider $H_{\infty}$ performance constraint for the optimization of statistically linearized systems, by replacing a covariance Lyapunov equation into a modified Riccati equation of which solution leads to an upper bound of the LQG performance. As a result, the nonlinear correction term is included in coupled Riccati equation, which is generally very difficult to thave a numerical solution. To solve this problem, we use the modified loop shaping technique and show some analytic proofs on LTR condition. Finally, the Quasi-LQG/$H_{\infty}$/LTR controller for a nonlinear system is synthesized by inverse random input describing function techniques (ITIDF). It is shown that the proposed design method has a better performance robustness to the hard nonlinearity than LQG/$H_{\infty}$/LTR method via simulations and experiments for the timing-belt driving servo system that contains the Coulomb friction and dead-zone.

  • PDF

산업용 로보트매니플레이터 제어기의 성능향상에 관한 연구 (A Stduy on the Performance Inprovement of Industrial Robot Manipulator Controller)

  • 한성현;이만형
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.85-102
    • /
    • 1990
  • Up to now, most robot control systems are very naive. They consist of a number of independent position-servo loops to control each joint angle separately. Those control systems have constant predefined gains and do not cover the complex dynamic interactions between manipulator joints. As a result, the manipulator is severely limited in range of application, speed of operation and variation of payload. This study proposed a new method to design a robot manipulator controller capable of tracking the reference trajectories of joint angles in a reasonable accuracy to cope with actual situations of varying payload, uncertain parameters. The adaptive model following control method has been used to improve existing robot manipulator controllers. The proposed controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories defined by the designer. The stability of adaptive controller is based on the Second Method of Lyapunov. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance under various load varia- tion and parameter uncertainties.

  • PDF

신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어 (Motion Control of an AUV Using a Neural-Net Based Adaptive Controller)

  • 이계홍;이판묵;이상정
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.8-15
    • /
    • 2002
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamic, and the basis function vector of network is constructed according to th AUV's physical properties. A sliding mode control scheme is introduced to attenuate the effect of the neural network's reconstruction errors and the disturbances in AUV's dynamics. Using Lyapunov theory, the stability of the presented control system is guaranteed as well as the uniformly boundedness of tracking errors and neural network's weights estimation errors. Finally, numerical simulations for motion control of an AUV are performed to illustrate the effectiveness of the proposed techniques.

이산 가변구조제어기를 이용한 자율무인잠수정의 심도제어 (Depth Control of an Autonomous Underwater Vehicle with System Uncertainties Based on Discrete Variable Structure System)

  • 이판묵;홍석원;전봉환
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.169-179
    • /
    • 1997
  • This paper presents a discrete-time sliding mode control of an autonomous underwater vehicle with parameter uncertainties and long sample interval based on discrete variable structure system. Although conventional sliding mode montrol techniques are robust to system uncertainties, in the case of the system with long sample interval, the sliding control system reveals chattering phenomenon and even makes the system unstable. This paper considers the AUV which acquires position informations from a surface ship through an acoustic telemetry system with a certain discrete interval. The control system is designed on the basis of a Lyapunov function and a sufficient condition of the switching gain to make the system stable is give. Each component of the switching gain can be determined separately one another. The controller is robust to the uncertainties, and reaching condition of the control system is satisfied for any initial condition. This control law is a generalized form of the discrete sliding mode control and reduce the chattering problem considerably. Motion control of the AUV in the vertical plane shows the effectiveness of the proposed technique.

  • PDF

백스텝핑 방법과 외란관측기법에 의한 미사일 제어시스템의 동역학을 고려한 미사일 유도법칙의 설계 (Design of a Missile Guidance Law via Backstepping and Disturbance Observer Techniques Considering Missile Control System Dynamics)

  • 송성호
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.88-94
    • /
    • 2008
  • In this paper, a design method of a missile guidance command is presented considering the dynamics of missile control systems. The design of a new guidance command is based on the well-known PNG(propotional navigation guidance) laws. The missile control system dynamics cause the time-delays of the PN guidance command and degrade the performance of original guidance laws which are designed under the assumption of the ideal missile control systems. Using a backstepping method, these time-delay effects can be compensated. In order to implement the guidance command developed by the backstepping procedure, it is required to measure or calculate the successive time-derivatives of the original guidance command, PNG and other kinematic variables such as the relative distance. Instead of directly using the measurements of these variables and their successive derivatives, a simple disturbance observer technique is employed to estimate a guidance command described by them. Using Lyapunov method, the performance of a newly developed guidance command is analyzed against a target maneuvering with a bounded and time-varying acceleration.