Caicedo Rivas, R.E.;Nieto, M. Paz-Calderon;Kamiyoshi, M.
Asian-Australasian Journal of Animal Sciences
/
v.29
no.4
/
pp.487-499
/
2016
The aim of the present study was to examine the effects of testosterone (T) and estradiol-$17{\beta}$ ($E_2$) on the production of progesterone ($P_4$) by granulosa cells, and of the $E_2$ on the production of $P_4$ and T by theca internal cells. In the first experiment, granulosa cells isolated from the largest ($F_1$) and third largest ($F_3$) preovulatory follicle were incubated for 4 h in short-term culture system, $P_4$ production by granulosa cells of both $F_1$ and $F_3$ was increased in a dose-dependent manner by ovine luteinizing hormone (oLH), but not T or $E_2$. In the second experiment, $F_1$ and $F_3$ granulosa cells cultured for 48 h in the developed monolayer culture system were recultured for an additional 48 h with increasing doses of various physiological active substances existing in the ovary, including T and $E_2$. Basal $P_4$ production for 48 h during 48 to 96 h of the cultured was about nine fold greater by $F_1$ granulosa cells than by $F_3$ granulosa cells. In substances examined oLH, chicken vasoactive intestinal polypeptide (cVIP) and T, but not $E_2$, stimulated in a dose-dependent manner $P_4$ production in both $F_1$ and $F_3$ granulosa cells. In addition, when the time course of $P_4$ production by $F_1$ granulosa cells in response to oLH, cVIP, T and $E_2$ was examined for 48 h during 48 to 96 h of culture, although $E_2$ had no effect on $P_4$ production by granulosa cells of $F_1$ during the period from 48 to 96 h of culture, $P_4$ production with oLH was found to be increased at 4 h of the culture, with a maximal 9.14 fold level at 6 h. By contrast, $P_4$ production with cVIP and T increased significantly (p<0.05) from 8 and 12 h of the culture, respectively, with maximal 6.50 fold response at 12 h and 6, 48 fold responses at 36 h. Furthermore, when $F_1$ granulosa cells were precultured with $E_2$ for various times before 4 h culture with oLH at 96 h of culture, the increase in $P_4$ production in response to oLH with a dose-related manner was only found at a pretreatment time of more than 12 h. In the third experiment, theca internal cells of $F_1$, $F_2$ and the largest third to fifth preovulatory follicles ($F_{3-5}$) were incubated for 4 h in short-term culture system with increasing doses of $E_2$. The production of $P_4$ and T by theca internal cells were increased with the addition of $E_2$ of $10^{-6}M$. These increases were greater in smaller follicles. These results indicate that, in granulosa cells of the hen, T may have a direct stimulatory action in the long term on $P_4$ production, and on $E_2$ in long-term action which may enhance the sensitivity to LH for $P_4$ production, and thus, in theca internal cells, $E_2$ in short term action may stimulate the production of $P_4$ and T.
Kim, Dae-Woon;Shin, Hee-Jung;You, Tae-Min;Noh, Gyeong-Woon;Kim, Hyun-Joo
The Korean Journal of Nuclear Medicine Technology
/
v.15
no.1
/
pp.101-105
/
2011
Purpose: Estradiol in the menstrual cycle and ovulation induction as an important test of currently national nuclear medicine laboratory in the normal patients and patients with infertility tests are being performed. For the diagnosis of menopause is an important test with follicle stimulating hormone (FSH) and Luteinizing hormone (LH). Currently participating in external quality control of the nation's hospitals that is 54 percent of 37 hospitals, 20 hospitals have been using A's reagent. The kit's test results are highly different from other kit comes with the test results of specimens have been found. And for the phenomenon is to study the problem. Materials and Methods: Estraiol test were referred to our hospital which results of samples as more than 100pg/ml 75 specimens measured by radioimmunoassay(RIA) test with company A company B company C company D Kit, Chemiluminescent assay (CMIA) to examine and compare to the results from april to August in 2010. Results: Kit for each manufacturing company as measured by the results obtained using the average value of the correlation coefficient (R2) and A company 0.8906 B 0.9527 C 0.9547 and D company correlation coefficient of 0.873 showed a good correlation that measuring the results of A company high concentrations when Company B Company C Company D with CMIA test concentrations measured low results that the two cases were discovered specimens. Conclusion: Most of the test results of 75 samples came up with a similar trend, but two cases were reported in the patients very differently. A company result reported higher than 700 pg/ml, while the rest of other test results report was approximately 10 pg/ml. The common point of two samples more than 50 years patients are estimated to be diagnosed with cancer in postmenopausal patients receiving treatment and levels of FSH were found to be greater than 50 mIU/ml. Did not identify the exact cause. I suggest if you are using A company kit that need to again check when Estradiol result and follicle stimulating hormone results is higher.
Purpose : Several complications can occur in patients who received bone marrow transplantation (BMT) during childhood and adolescence. This study aims to investigate endocrine dysfunctions after BMT so that better care can be provided to care for long-term survivors of BMT. Methods : One hundred patients (61 males, 39 females) were included in this study. Clinical parameters such as initial diagnosis, age at BMT, conditioning regimen, presence of graft-versus-host disease (GVHD), growth pattern, thyroid function, and pubertal status were retrospectively reviewed to evaluate risk factors associated with endocrine dysfunction. Results : Height standard deviation score (SDS) at BMT, after 1 year of BMT, and at the last visit were $0.08{\pm}1.04$, $-0.09{\pm}1.02$, and $-0.27{\pm}1.18$, respectively (P =0.001). Height SDS significantly decreased in patients who received total body irradiation (TBI) (P =0.017). One of the patients who received TBI demonstrated growth hormone deficiency. Thirty (31.9%) of 94 patients had compensated hypothyroidism. Incidence of compensated hypothyroidism was higher among those who had GVHD (odds ratio 2.82, P =0.025). Of the 32 patients (17 males, 15 females) who were over 14 years in male and 13 years in female at the last visit, 16 (3 males, 13 females) had increased luteinizing hormone (LH) or follicle-stimulating hormone (FSH). Abnormal elevation of LH or FSH was more common in females (odds ratio 30.3, P =0.001). Conclusion : The most common endocrine dysfunction was ovarian insufficiency. Regular check-up for endocrine function needs to be required due to high incidence of endocrine dysfunction in patients with BMT.
The corpus luteum (CL) is formed by the action of a surge of luteinizing hormone (LH) on the pre-ovulatory follicle. Luteal cells derived from granulosa and theca interna cells continue to secrete progesterone for about two weeks. LH in domestic animals is essential for the normal secretion of progesterone at all stages of the luteal phase. For this process in the rodents, 20$\alpha$-hydroxysteroid dehydrogenase (20$\alpha$-HSD) is indispensable. 20$\alpha$-HSD is an enzyme to be a biologically inactive steroid. This enzyme plays a critical role in the regulation of the rat luteal function and reported to be present in steroid-producing tissues such as the testis and adrenal gland. We have purified 20$\alpha$-HSD and found two distinct 20$\alpha$-HSD molecules (HSD-1 and HSD-2). Their molecular weights are both estimated to be 33kd.The amino acid compositions of HSD-1 and HSD-2 are mostly similar, but there is a slight difference in the content of lysine. We demonstrated that 1) CL of previous generations contribute more to whole ovarian 20$\alpha$-HSD activity, 2) newly formed corpora lutea contain only 20$\alpha$-HSD-1 activity, and 3) old CL express activities of each HSD isozyme as shown in the luteal tissue of cycling rats on the day of diestrus where only degenerating old CL exist. The increase in 20$\alpha$-HSD activity identified seems to be related to the increase in the numbers of 20$\alpha$-HSD-positive cells. Interestingly, 20$\alpha$-HSD-1 activities were strongly found in the follicle fluids and theca interna cells by immunohistochemical study. Thus, the activity of 20$\alpha$-HSD may be related to a survival mechanism of those luteal cells and follicles remaining in the ovaries. Luteal cells arise from two sources. The small luteal cells are all of theca cell origin, while the large luteal cells are mainly of granulosa cell origin. CL of Korean Native Cattle, as those of other animal species, contains two morphologycally and functionally distinct luteal cell populations, such as small and large luteal cells as well as nonluteal cells. In all reproductive states except in the late luteal phase, the bovine CL also contained more small luteal cells than large luteal cells. Luteal tissue secretes a variety of growth factors (proteins) and the pattern of secretion changes during all stages of the luteal phase. These growth factors could be important in regulating the function of the bovine corpus luteum and may act in a potential endocrine autocrine and paracrine mechanisms. Therefore, further work has to be done to elucidate the role of growth factors in the ovary, especially in the corpus luterum. Interest should be focussed on interaction of these growth factors in the regulation of luteal cell and the localization of cytokine synthesis in differnet luteal cells.
The purpose of this study was to determine the effects of Taxol pre-treatment to in vitro matured bovine oocytes, and sucrose and trehalose added to vitrification solution on spindle morphology and embryonic development following cryopreservation. Bovine oocytes were collected from ovaries and matured in tissue culture medium 199 (TCM 199) supplemented with 10% Fetal Bovine Serum (FBS), 0.05ng/ml epidermal growth factor, 0.01 IU/ml luteinizing hormone and $1{\mu}g/ml$ estradiol for 22h in $39^{\circ}C$, 5% $CO_2$, TCM 199-HEPES containing 20% FBS was used as basic medium (BM) to prepare vitrification solution. Oocytes were pre-treated with $1\;{\mu}M$ Taxol in maturation medium for 15 min prior to vitrification. Oocytes were exposed to 1.6 M ethylene glycol (EG) and 1.3M dimethyl sulfoxide (DMSO) in BM and then were exposed to 3.2 M EG, 2.6 M DMSO and 0.5 M sucrose in BM or 3.2 M EG, 2.6 M DMSO and 0.5 M trehalose in BM. Oocytes with cumulus cells and oocytes without cumulus cells were considered as control 1 and control 2, respectively and held in TCM 199-HEPES at $39^{\circ}C$. Oocytes were frozen using modified solid surface vitrification and were stored in cryotubes in liquid nitrogen for more than 1 week. Frozen oocytes were thawed in TCM 199-HEPES containing 0.5 M, 0.25 M and 0.1 M sucrose in BM for 2 min, respectively or 0.5 M, 0.25 M and 0.1 M trehalose in BM for 2 min, respectively. Immunoflurorescence staining of oocytes was performed to assess spindle morphology and chromosome configuration of oocytes. The rates of cleavage and blastocyst were examined following in vitro fertilization. Normal spindle morphology rate of oocytes pre-treated with Taxol prior to vitrification was not higher than that of other vitrified groups. Taxol pre-treatment did not increase cleavage and blastocyst formation rates, although control groups showed significantly higher rates (p<0.05). Percentages of normal spindle and embryonic development were not significantly different among vitrified groups regardless of type of sugar. In conclusion, Taxol pre-treatment of oocytes before cryopreservation did not reduce the damage induced by vitrification and subsequently did not improve embryonic development following vitrification. Trehalose may be used as an alternative non-permeating cryoprotectant in vitrification solution.
The purpose of this study was to determine toxic effect of sucrose and trehalose prior to cryopreservation on nuclear maturation and embryonic development in immature bovine oocytes. All cryoprotectant was prepared in tissue culture medium 199-HEPES (TCM 199-HEPES) with 10% fetal bovine serum (FBS). Immature oocytes were exposed to 1.2M ethylene glycol (EG) and 0.1M sucrose or 1.2M EG and 0.1M trehalose for 3 min and then were exposed to 3.2 M EG and 0.25 M sucrose or 3.2 M EG and 0.25 M trehalose for 1 min. Oocytes treated with cryoprotectants were exposed to 0.25 M sucrose or 0.25 M trehalose for 5 min and then 0.1 M sucrose or 0.1 M trehalose for 5 min. Depending on type of sugar added to cryopreservation solution, oocytes were allocated to sucrose group and trehalose group, respectively. Oocytes exposed to TCM 199-HEPES with 10% FBS were considered as control. Oocytes were cultured in TCM 199 supplemented with 10% FBS, 5 ng/ml epidermal growth factor, 0.01 IU/ml luteinizing hormone, and $1\;{\mu}g/ml$ estradiol for 24 h in $39^{\circ}C$, 5% $CO_2$. Nuclear maturation was assessed by staining oocytes with 1% aceto-orcein. Oocytes were fertilized in vitro and were cultured in TCM 199 supplemented with 10% FBS, 5 mM sodium pyruvate, and antibiotics in $39^{\circ}C$, 5% $CO_2$. The rates of cleavage and blastocyst, and cell number in blastocyst were assessed. Metaphase II rates were not different among experimental groups regardless of type of sugar. The cleavage rate of trehalose group (73.3%) was significantly higher (p<0.05) than those of sucrose group (62.8%) and control group (60.8%). The blastocyst rate was significantly higher in trehalose group (p<0.05). Mean cell number in blastocyst were not different among experimental groups, although cell number of blastocyst in trehalose group was significantly higher on day 7 (p<0.05). In conclusion, sucrose and trehalose were not toxic to immature bovine oocytes prior to cryopreservation. In particular, trehalose was more effective on embryonic development.
It has been reported that the luteal function may be regulated by the intracellular $Ca^{++}$ level which may be adjusted partially by the high affinity $Ca^{++}-ATPase$ in luteal cell membranes. Then, one may expect that luteotropic and/or luteolytic agents, such as gonadotropins, prostaglandin $F_{2{\alpha}}\;(PGF_{2{\alpha}})$ and ouabain, affect the intracellular $Ca^{++}$ level. In this present study, therefore, we examined the effects of luteinizing hormone (LH, or human chorionic gonadotropin, hCG), $PGF_{2{\alpha}}$ and ouabain on the kinetic properties of the high affinity $Ca^{++}-ATPase$ in light membrane, heavy membrane, and microsomal fractions from the highly luteinized ovary. LH (or hCG) increased the affinity and the Vmax for $Ca^{++}$ both in light membrane and heavy membrane. $PGF_{2{\alpha}}$ increased the Vmax in light membrane and decreased the Km in heavy membrane for $Ca^{++}$ at low concentration $(5\;{\mu}g/ml)$. At higher concentration, however, $PGF_{2{\alpha}}$ oppositly affected on kinetic properties, that shown at low concentration. Ouabain, a potent inhibitor of $Na^+-K^+-ATPase$, increased the Km at high concentration $(10^{-4}\;M)$, however, decreased the Vmax for $Ca^{++}$ in light membrane at low concentration $(10^{-6}\;M)$. Also, ouabain increased the Km for $Ca^{++}$ in heavy membrane without changes in the Vmax at both concentrations. It seems that LH and low dose of $PGF_{2{\alpha}}$ increase the intracellular $Ca^{++}$ level and cause in activation of $Ca^{++}-ATPase$, however, higher dose of $PGF_{2{\alpha}}$ and ouabain inhibit directly $Ca^{++}-ATPase$ activity and result in increase in intracellular $Ca^{++}$ level. According to the above results, we suggest that luteotropic and/or luteolytic agents regulate the luteal progesterone $(P_4)$ production through two different pathways; one is cyclic adenosine monophosphate (cAMP)-dependent and another is $Ca^{++}-dependent$. Intracellula. $Ca^{++}$ level regulated by the high affinity $Ca^{++}-ATPase$ may affect both pathways in a time-dependent fashion. LH (or hCG) acts on the luteal $P_4$ production via both pathways. The initial step is $Ca^{++}$ dependent, and the late step is cAMP dependent. $PGF_{2{\alpha}}$ and ouabain increase the intracellular $Ca^{++}$ concentration so that basal luteal $P_4$ production is increased and LH-stimulated $P_4$ production is inhibited by the inhibiting LH-dependent adenylate cyclase activity.
Changes in the rat testis interstitium from birth to adulthood were studied using Sprague Dawley rats of 1, 7, 14, 21, 28, 40, 60, and 90 days of age to investigate Leydig cell differentiation. In addition, serum testosterone concentrations and luteinizing hormone stimulated (LH; 100 ng/ml) testosterone secretory capacity per testis in vitro were determined via radioimmunoassay. Fetal Leydig cells were present in rat testes from birth to 21 days, and they were only steroidogenic cells in the testis at days 1 and 7. The average volume of a fetal Leydig cell and the absolute volume of fetal Leydig cell per testis were similar at all ages of experimental groups except at day 21 when lower values were observed for both parameters. The number of fetal Leydig cells per testis remained constant from birth through 21 days. Adult Leydig cells were recognized at day 14 and their absolute volume and number per testis increased linearly from 14 to 90 days. The average volume of an adult Leydig cell increased significantly with age and reached maximum size by 60 days of age where the volume was nearly three times bigger than that of at day 14. Total testosterone production per testis in vitro and serum testosterone concentrations were not significantly different at day 1 compared with 7, 14, and 21 days of age. Significant increases were observed at days 40 and 60. Values at days 60 and 90 were not significantly different.
Objective: Environmental chemicals alter reproduction, growth, and survival by changing the normal function of the endocrine system. Bisphenol A (BPA), one of the endocrine disruptors, is known to be an estrogen receptor agonist. Therefore, we hypothesized that BPA may affect male reproduction including spermatogenesis in the mouse testis. Methods: We used 7-week-old ICR mice. The first experiment group received BPA in sesame oil (vehicle, 1 mg/kg, 10 mg/kg, and 100 mg/kg) by i.p. injection and mice were sacrificed 24 hr later. The second experiment group received BPA (vehicle, 10 ${\mu}g/kg$, 1 mg/kg, and 100 mg/kg) daily for 14 days by subcutaneous injection. Expression of cell type-specific marker genes in the testis was evaluated by RT-PCR. Histological analysis, immunofluorescence staining, and TUNEL staining were also performed. Results: RT-PCR analyses showed that expression of luteinizing hormone receptor (LHR), a marker gene for the Leydig cell, was notably decreased in the testes of high dose-exposed mice. No obvious difference in the histology of testes was noted among treatment groups. Immunostaining of LHR in the first experiment group did not show noticeable difference in LHR protein expression in Leydig cells. Immunohistochemistry also revealed heightened expression of the immunoreactive Bax in the treatment group, and this was accompanied by positive TUNEL staining in the interstitial area within testis where Leydig cells reside. Conclusions: Our result suggests that BPA affects Leydig cell functions by altering gene expression and by increasing apoptosis in the mouse testis.
Pituitary LH release has been known to be regulated by the hypothalamic gonadotropin releasing hormone (GnRH) and the gonadal steroid hormones. In addition, neurotransmitters and neuropeptides are actively involved in the control of LH secretion. The alteration in LH release might reflect changes in biosynthesis and/or posttranslational processing of LH. However, little is known about the mechanism by which biosynthesis of LH subunits is regulated, especially at the level of transcription. In order to investigate if ovarian steroid hormones regulate the LH subunit gene expression, ${\alpha}\;and\;LH{\beta}$ steady state mRNA levels were determined in anterior pituitaries of ovariectomized rats. Serum LH concentrations and pituitary LH concentrations were increased markedly with time after ovariectomy. ${\alpha}\;and\;LH{\beta}$ subunit mRNA levels after ovariectomy were increased in a parallel manner with serum LH concentrations and pituitary LH contents, the rise in $LH{\beta}$ subunit mRNA levels being more prominent than the rise in ${\alpha}\;subunit$ mRNA. ${\alpha}\;and\;LH{\beta}$ subunit mRNA levels in ovariectomized rats were negatively regulated by the continuous treatment of ovarian steriod hormones for $1{\sim}4\;days$ and $LH{\beta}\;subunit$ mRNA seemed to be more sensitive to negative feedback of estradiol than progesterone. Treatment of estrogen antagonist, LY117018 or progesterone antagonist, RU486 significantly restroed LH subunit mRNA levels as well as LH release which were suppressed by estradiol or progesterone treatment. These results suggest that ovarian steroids negatively regulate the LH synthesis at the pretranslational level by modulating the steady state levels of ${\alpha}\;and\;LH{\beta}\;subunit$ mRNA and $LH{\beta}\;subunit$ mRNA seemed to be more sensitive to negative feedback action of estradiol than progesterone.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.