• Title/Summary/Keyword: low-voltage swing

Search Result 117, Processing Time 0.027 seconds

Low-operating voltage Pentacene FETs with High dielectric constant polymeric gate dielectrics and its hyteresis behavior

  • Park, Chan-Eon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.168-168
    • /
    • 2006
  • Low-operating voltage organic field-effect transistors (OFETs) have been realized with high dielectric constant (${\kappa}$) polymer such as cyanoethylated poly vinyl alcohol (CR-V, ${\kappa}=12$). Since the $high-{\kappa}$polymers are likely to contain water and ionic impurities, large hysteresis and considerable leakage current are frequently observed in OFETs. To solve these problems, we cross-linked the CR-V by using a cross-linking agent. Cross-linked CR-V dielectrics showed high dielectric constant of 11.1 and good insulating properties, resulting in a high capacitance ($81nF/cm^{2}$ at 1MHz) at 120 nm of dielectric thickness. Pentacene FETs with cross-linked CR-V dielectrics exhibited high carrier mobility ($0.72\;cm^{2}/Vs$), small subthreshold swing (185 mV/dec) and little hysteresis at low-operating voltage (${\Leq}-3V$).

  • PDF

The Design of a Low Power and Wide Swing Charge Pump Circuit for Phase Locked Loop (넓은 출력 전압 범위를 갖는 위상동기루프를 위한 저전압 Charge Pump 회로 설계)

  • Pu, Young-Gun;Ko, Dong-Hyun;Kim, Sang-Woo;Park, Joon-Sung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.44-47
    • /
    • 2008
  • In this paper, a new circuit is proposed to minimize the charging and discharging current mismatch in charge pump for UWB PLL application. By adding a common-gate and a common-source amplifier and building the feedback voltage regulator, the high driving charge pump currents are accomplished. The proposed circuit has a wide operation voltage range, which ensures its good performance under the low power supply. The circuit has been implemented in an IBM 0.13um CMOS technology with 1.2V power supply. To evaluate the design effectiveness, some comparisons have been conducted against other circuits in the literature.

Low voltage Low power OTAs using bulk driven in 0.35㎛ CMOS Process (0.35㎛ CMOS 공정에서 벌크 입력을 사용한 저전압 저전력 OTAs)

  • Kang, Seong-Ki;Jung, Min-Kyun;Han, Dae-Deok;Yang, Min-Jae;Yoon, Eun-Jung;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.451-454
    • /
    • 2015
  • This paper introduces 3 type of OTAs with $0.35-{\mu}m$ standard CMOS technology for Low-Power, Low-Voltage. The first type is a two-stage OTA designed to operate with a 1-V VDD and it has $1.774{\mu}W$ low power consumption. All transistors are operating in strong inversion. It takes Gm-Enhancement techniques to compensate gm, which is lowered by Bulk-Driven technique and has an Wide swing current mirror for low voltage operation and a Class-A output. The second type is a Two-stage OTA designed to operate with a 0.8-V VDD and It has 52nW low power consumption and 112dB high gain. The current mirror uses Composite Transistor binding Gates of two MOSFET to raise Rout which is similar with cascode structure. The third type is a Two-stage OTA designed to operate with a 0.6-V VDD and It has 160nW low power consumption and 72dB high gain. It takes Level Shift technique by Common Gate structure to amplify signals without additional bias voltage at second stage.

  • PDF

A Gate-Leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in 0.13-μm N-well CMOS

  • Um, Ji-Yong;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • A fully-differential low-voltage low-power electrocardiogram (ECG) amplifier by using the nonfeedback PMOS pseudo-resistors is proposed. It consists of two operational-transconductance amplifiers (OTA) in series (a preamplifier and a variable-gain amplifier). To make it insensitive to the gate leakage current of the OTA input transistor, the feedback pseudo-resistor of the conventional ECG amplifier is moved to input branch between the OP amp summing node and the DC reference voltage. Also, an OTA circuit with a Gm boosting block without reducing the output resistance (Ro) is proposed to maximize the OTA DC gain. The measurements shows the frequency bandwidth from 7 Hz to 480 Hz, the midband gain programmable from 48.7 dB to 59.5 dB, the total harmonic distortion (THD) less than 1.21% with a full voltage swing, and the power consumption of 233 nW in a 0.13 ${\mu}m$ CMOS process at the supply voltage of 0.7 V.

Characteristics of Fabricated Devices and Process Parameter Extraction by DTC (DTC에 의한 공정 파라메터 추출 및 제작된 소자의 특성)

  • 서용진;이철인;최현식;김태형;최동진;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.29-34
    • /
    • 1993
  • In this paper, we used one-dimensional process simulator, SUPREM-II, and two-dimensional device simulator, MINIMOS 4.0 to extract optimal process parameter that can minimize degradation of device characteristics caused by process parameter variation in the case of short channel nMOSFET and pMOSFET device. From this simulation, we have derieved the relationship between process parameter and device characteristics. Here we have presented a method to extract process parameters from design trend curve(DTC) obtained by process and device simulations. We parameters to verify the validity of the DTC method. The experimental result of 0.8 $\mu\textrm{m}$ channel length devices that have been fabricated with optimal that reduces short channel effects, that is, good drain current-voltage characteristics, low body effects and threshold voltage of 1.0 V, high punchthrough and breakdown voltage of 12 V, low subthreshold swing(S.S) values of 105 mV/decade.

  • PDF

Parameter Extraction and Device Characteristics of Submicron MOSFET'S(II) -Characteristics of fabricated devices- (서브마이크론 MOSFET의 파라메터 추출 및 소자 특성 II -제작된 소자의 특성-)

  • 서용진;장의구
    • Electrical & Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.225-230
    • /
    • 1994
  • In this paper, we have fabricated short channel MOSFETs with these parameters to verify the validity of process parameters extraction by DTC method. The experimental results of fabricated short channel devices according to the optimal process parameters demonstrate good device characteristics such as good drain current-voltage characteristics, low body effects and threshold voltage of$\leq$+-.1.0V, high punch through and breakdown voltage of$\leq$12V, low subthreshold swing(S.S) values of$\leq$105mV/decade.

  • PDF

Design of Low-Area DC-DC Converter for 1.5V 256kb eFlash Memory IPs (1.5V 256kb eFlash 메모리 IP용 저면적 DC-DC Converter 설계)

  • Kim, YoungHee;Jin, HongZhou;Ha, PanBong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2022
  • In this paper, a 1.5V 256kb eFlash memory IP with low area DC-DC converter is designed for battery application. Therefore, in this paper, 5V NMOS precharging transistor is used instead of cross-coupled 5V NMOS transistor, which is a circuit that precharges the voltage of the pumping node to VIN voltage in the unit charge pump circuit for the design of a low-area DC-DC converter. A 5V cross-coupled PMOS transistor is used as a transistor that transfers the boosted voltage to the VOUT node. In addition, the gate node of the 5V NMOS precharging transistor is made to swing between VIN voltage and VIN+VDD voltage using a boost-clock generator. Furthermore, to swing the clock signal, which is one node of the pumping capacitor, to full VDD during a small ring oscillation period in the multi-stage charge pump circuit, a local inverter is added to each unit charge pump circuit. And when exiting from erase mode and program mode and staying at stand-by state, HV NMOS transistor is used to precharge to VDD voltage instead of using a circuit that precharges the boosted voltage to VDD voltage. Since the proposed circuit is applied to the DC-DC converter circuit, the layout area of the 256kb eFLASH memory IP is reduced by about 6.5% compared to the case of using the conventional DC-DC converter circuit.

Design of a High-Speed LVDS I/O Interface Using Telescopic Amplifier (Telescopic 증폭기를 이용한 고속 LVDS I/O 인터페이스 설계)

  • Yoo, Kwan-Woo;Kim, Jeong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.89-93
    • /
    • 2007
  • This paper presents the design and the implementation of input/output (I/O) interface circuits for 2.5 Gbps operation in a 3.3V 0.35um CMOS technology. Due to the differential transmission technique and low voltage swing, LVDS(low-voltage differential signaling) has been widely used for high speed transmission with low power consumption. This interface circuit is fully compatible with the LVDS standard. The LVDS proposed in this paper utilizes a telescopic amplifier. This circuit is operated up to 2.3 Gbps. The circuit has a power consumption of 25. 5mW. This circuit is designed with Samsung $0.35{\mu}m$ CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

Current-Voltage Characteristics of Schottky Barrier SOI nMOS and pMOS at Elevated Temperature (고온에서 Schottky Barier SOI nMOS 및 pMOS의 전류-전압 특성)

  • Ka, Dae-Hyun;Cho, Won-Ju;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.21-27
    • /
    • 2009
  • In this work, Er-silicided SB-SOI nMOSFET and Pt-silicided SB-SOI pMOSFET have been fabricated to investigate the current-voltage characteristics of Schottky barrier SOI nMOS and pMOS at elevated temperature. The dominant current transport mechanism of SB nMOS and pMOS is discussed using the measurement results of the temperature dependence of drain current with gate voltages. It is observed that the drain current increases with the increase of operating temperature at low gate voltage due to the increase of thermal emission and tunneling current. But the drain current is decreased at high gate voltage due to the decrease of the drift current. It is observed that the ON/Off current ratio is decreased due to the increased tunneling current from the drain to channel region although the ON current is increased at elevated temperature. The threshold voltage variation with temperature is smaller and the subthreshold swing is larger in SB-SOI nMOS and pMOS than in SOI devices or in bulk MOSFETs.

Constant Voltage Stress (CVS) and Hot Carrier Injection (HCI) Degradations of Vertical Double-date InGaAs TFETs for Bio Sensor Applications (바이오 센서 적용을 위한 수직형 이중게이트 InGaAs TFET의 게이트 열화 현상 분석)

  • Baek, Ji-Min;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.41-44
    • /
    • 2022
  • In this study, we have fabricated and characterized vertical double-gate (DG) InGaAs tunnel field-effect-transistors (TFETs) with Al2O3/HfO2 = 1/5 nm bi-layer gate dielectric by employing a top-down approach. The device exhibited excellent characteristics including a minimum subthreshold swing of 60 mV/decade, a maximum transconductance of 141 µS/㎛, and an on/off current ratio of over 103 at 20℃. Although the TFETs were fabricated using a dry etch-based top-down approach, the values of DIBL and hysteresis were as low as 40 mV/V and below 10 mV, respectively. By evaluating the effects of constant voltage and hot carrier injection stress on the vertical DG InGaAs TFET, we have identified the dominant charge trapping mechanism in TFETs.