• Title/Summary/Keyword: low-temperature hydrothermal synthesis

Search Result 52, Processing Time 0.023 seconds

Synthesis of Cu2O Particles Using the Hydrothermal Method (수열합성법을 이용한 Cu2O 입자의 합성)

  • Seongmin Shin;Kyunghwan Kim;Jeongsoo Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.63-67
    • /
    • 2024
  • In this study, we successfully synthesized copper oxide (Cu2O) particles through a hydrothermal method at a relatively low temperature (150℃). The synthesis involved the precise control of molar concentrations of NaOH. Notably, Cu2O particles were effectively synthesized when NaOH concentrations of 0.15 M and 0.20 M were utilized. While attempts were made at different molar concentrations, the synthesis of pure Cu2O particles was only achieved at concentrations of 0.15 M and 0.20 M. In this experimental investigation, Cu2O synthesized under these specific conditions exhibited absorption characteristics within the wavelength range of 640 to 570 nm, consistently exhibiting a band gap energy of 1.9 eV. These Cu2O particles, characterized by their small band gap energy and straightforward synthetic method, hold significant promise for various applications including semiconductors and solar cells.

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Microwave Hydrothermal Sythesis of PbTiO$_3$ and PMN Ceramic Powders (마이크로파 수열법에 의한 PbTiO$_3$ PMN 세라믹분말의 합성)

  • Bai, Kang
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.465-471
    • /
    • 1998
  • Lead titanate(PT) and lead magnesium niobate(PMN) ceramic powders were prepared by microwave hy-drothermal method using teflon bomb. Raw materials were Pb(NO3)2 and TiO2 for lead titanate and Pb(NO3)2 Nb2O5 and Mg(NO)3.6H2O for PMN with NaOH as mineralizer in both cases. in lead titanate synthsis rate of microwave hydrothermal method was faster three times than one f conventional hydrothermal methods In lead magnesium niobate synthsis the mixture of perovskite and pyrochlore phases was obtained by single step technique and the PMN was not obtained by double step technique due to low temperature limitation of teflon bomb.

  • PDF

Low-temperature Hydrothermal Synthesis of Organic Smectite from Siliceous Mudstone (규질 이암으로부터 유기 스멕타이트의 저온 수열합성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.49-59
    • /
    • 2004
  • Organic smectite was hydrothermally synthesized by treating the opal-rich siliceous mudstone from the Pohang area with TMAOH solutions and 1:1 solutions of TMAOH+NaOH at $80^{\circ}C$ and concentrations ranging 10∼15%. Smectite was solely formed without accompanying any mineral products in case of TMAOH, whereas NaP and hydroxysodalite was synthesized together with smectite under the blending solution of TMAOH+NaOH. The synthesized smectite is identified as an organic smectite intercalating $TMA^{+}$ within its interlayer site, specifically corresponding to monmorillonite species, through mineralogical characterization by XRD, DTA, and IR analyses. The experimental results indicate that main precursor of the synthesized smectite is undoubtedly opal-CT, and the original sedimentary smectite included as considerable amounts in the mudstone seems to play a major role as Al-sources necessary far the smectite formation. Original inert components such as quartz and mica do not affect mostly to the synthesis reaction, and thus, are resultantly found as impurities in the synthetic products. These experimental results may imply that a new effective method for the low-temperature (less than $100^{\circ}C$) hydrothermal synthesis of organic smectite will be established if some Al-sources adequate for this synthetic system are available.

Synthesis of zeolite A from coal fly ash by alkali fusion followed by hydrothermal treatment (알칼리 용융 및 수열 합성에 의한 석탄회로부터 제올라이트 A의 합성)

  • Jeong, Ji-Baek;Choi, Ko-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.240-247
    • /
    • 2015
  • Zeolite A was prepared from coal fly ash upon NaOH fusion treatment, followed by hydrothermal treatment. The effects of treatment conditions such as NaOH/ash ratio, fusion temperature, the amount of sodium aluminate added, hydrothermal treatment temperature and time on the type and the crystallinity of zeolites were investigated. The optimal NaOH/ash weight ratio and fusion temperature to produce high crystalline zeolite A were 1.2 and $550^{\circ}C$, respectively. The dissolution of $Si^{4+}$ and $Al^{3+}$ from the fused fly ash was not affected by stirring time. The type of synthetic zeolites was found to be dependent on the amount of sodium aluminate added. The low amount of sodium aluminate favored zeolite X, while a single phase zeolite A was produced by increasing the amount sodium aluminate. Zeolite A was transformed into hydroxysodalite with increasing hydrothermal treatment time and temperature. A high crystalline zeolite A could be obtained by decreasing the temperature increasing time up to the reaction temperature.

Synthesis of zinc oxide nanoparticles via aqueous solution routes (수용액 합성법에 의한 ZnO 나노분말의 합성)

  • Koo, Jin Heui;Yang, Jun Seok;Cho, Soo Jin;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.175-180
    • /
    • 2016
  • ZnO nanoparticles were synthesized by aqueous preparation routes of a precipitation and a hydrothermal process. In the processes, the powders were formed by mixing aqueous solutions of Zn-nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) with NaOH aqueous solution under controlled reaction conditions such as Zn precursor concentration, reaction pH and temperature. Single ZnO phase has been obtained under low Zn precursor concentration, high reaction pH and high temperature. The synthesized particles exhibited flakes (plates), multipods or rods morphologies and the crystallite sizes and shapes would be efficiently controllable by changing the processing parameters. The hydrothermal method showed advantageous features over the precipitation process, allowing the precipitates of single ZnO phase with higher crystallinity at relatively low temperatures below $100^{\circ}C$ under a wider pH range for the Zn precursor concentration of 0.1~1 M.

Synthesis of the Ultrafine $BaTiO_3$ power by hydrothermal Process

  • Bae, Dong-Sik;Han, Kyong-Sop;Park, Sang-Heul
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.87-89
    • /
    • 1997
  • The BaTiO$_3$ fine powder was prepared by hydrthermal method using titanium tetrahydoxide (Ti(OH)$_4$) and barium dihydroxide (Ba(OH)$_2$.8$H_2O$) as raw materials. The fine powder was obtained at temperatures as low as 160 to 185$^{\circ}C$. The properties of the BaTiO$_3$ powder were studied as a function of various parameters (reaction temperature, reaction time, Ba/Ti=ratio, etc). The average particle size of the BaTiO$_3$ increased with increasing reaction temperature. After hydrothermal treatment at 17$0^{\circ}C$ for 8 h, the average particle size of the BaTiO$_3$ powder was about 30 nm and the particle size distribution was narrow.

  • PDF

Hydrothermal Synthesis of PZT Powders. (수열법에 의한 PZT분말 합성 연구)

  • 최승도;박병규
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.97-104
    • /
    • 1997
  • Hydrothermal synthesis of PbZ1-xTixO3 has been investigated. Syntheses were performed using lead acetate triphdrate as Pb source, Ti/Zr gel by hydrolizing Ti-isopropoxide as Tiand Zr source and Zr-propoxide and KOH (0.5m, 1m, 2m) as mineralizer. The hydrothermal synthesis has been examined at 140℃, 150℃ and 160℃. Synthesized PZT powders showed a rectangular shape and were agglomerate. At 1m and 2m KOH concentrations PZT powders were synthesized the respective time of 8 hrs and 1hr but at 0.5m KOH concentration phase pure PZT powders were not synthesized for 5days reaction. At the conditions of low temperature and low KOH concentration unreacted Ti/Zr gel remained although synthesized powders were almost PZT. The size of PZT powders increased with KOH concentrations. PbO solid solutions were formed as intermediate phases and these were classified to PbO-10%TiO2 solid solution and PbO-3% TiO-3% TiO2 solid solution.

  • PDF

Low Temperature Synthesis of TiO2 Films for Application to Dye-sensitized Solar Cells

  • Wi, Jin-Seong;Choe, Eun-Chang;Seo, Yeong-Ho;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.475-475
    • /
    • 2014
  • Dye sensitized solar cells (DSSCs) are regarded as potential inexpensive alternatives to conventional solid-state devices. The flexible version, employing conductive-plastic-film substrates, is appealing for commercialization of DSSCs because it not only reduces the weight and cost of the device but also extends their applications. However, the need for high temperature does not permit the use of plastic-film substrate. So, development of low-temperature methods is therefore realization of flexible DSSCs. In this work, the electrophoretic deposition combined with hydrothermal treatment was employed to prepare nanocrystalline $TiO_2$ thin film at low temperature. We confirmed the prepared $TiO_2$ thin films with different voltages and deposition times in the electrophoretic deposition process. Properties of the $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF

Synthesis and characterizations of the non-swelling property micas by hydrothermal method (비팽윤성 운모의 수열합성 및 특성평가)

  • Park, Chun-Won;Park, Sun-Min;Kambayashi, Akira
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.95-100
    • /
    • 2006
  • Synthesis of the non-swelling property micas was carried out by hydrothermal method. In order to artificially induce the diffusion of ions, a rotating system was attached to the hydrothermal apparatus and by adding 0.7 mm zircon beads, synthesis of the non-swelling property micas could be performed in a low temperature area. The hydrothermal conditions for the preparation of micas were a reaction temperature of $260^{\circ}C$, for 72 hrs, using $1K_2O,\;1Al(OH)_3,\;4Mg(OH)_2\;and\;6SiO_2$ as the starting materials and a 8M-KOH solution as the hydrothermal solvent. The micas obtained under these conditions were a plate shape with a size of $2.89{\mu}m$ and showed a whiteness of over 97 %. Also, through the FT-IR analysis, because the absorption peak of the $Mg_3OH$ vibration was observed at approximately $3700cm^{-1}$, it could be known that it was phlogopite of non-swelling property showing the chemical composition of $KMg_3AlSi_3O_{10}(OH)_2$. This result was very consistent with the EDS analysis where O (41.34 %), Mg (3.88 %), Al (11.45 %), Si (17.62 %) and K (25.71%) elements were detected.