DOI QR코드

DOI QR Code

Synthesis of Cu2O Particles Using the Hydrothermal Method

수열합성법을 이용한 Cu2O 입자의 합성

  • Seongmin Shin (Department of Electrical Engineering, Gachon University) ;
  • Kyunghwan Kim (Department of Electrical Engineering, Gachon University) ;
  • Jeongsoo Hong (Department of Electrical Engineering, Gachon University)
  • Received : 2023.09.18
  • Accepted : 2023.09.27
  • Published : 2024.01.01

Abstract

In this study, we successfully synthesized copper oxide (Cu2O) particles through a hydrothermal method at a relatively low temperature (150℃). The synthesis involved the precise control of molar concentrations of NaOH. Notably, Cu2O particles were effectively synthesized when NaOH concentrations of 0.15 M and 0.20 M were utilized. While attempts were made at different molar concentrations, the synthesis of pure Cu2O particles was only achieved at concentrations of 0.15 M and 0.20 M. In this experimental investigation, Cu2O synthesized under these specific conditions exhibited absorption characteristics within the wavelength range of 640 to 570 nm, consistently exhibiting a band gap energy of 1.9 eV. These Cu2O particles, characterized by their small band gap energy and straightforward synthetic method, hold significant promise for various applications including semiconductors and solar cells.

Keywords

Acknowledgement

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(RS-2023-00227306) 및 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012451, 2022년 산업혁신인재성장지원사업).

References

  1. M. Mallik, S. Monia, M. Gupta, A. Ghosh, M. P. Toppo, and H. Roy, J. Alloys Compd., 829, 154623 (2020). doi: https://doi.org/10.1016/j.jallcom.2020.154623
  2. D. Gupta, S. R. Meher, N. Illyaskutty, and Z. C. Alex, J. Alloys Compd., 743, 737 (2018). doi: https://doi.org/10.1016/j.jallcom.2018.01.181
  3. S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, and Z. Yang, Prog. Mater. Sci., 96, 111 (2018). doi: https://doi.org/10.1016/j.pmatsci.2018.03.006
  4. A. Rubino, R. Zanoni, P. G. Schiavi, A. Latini, and F. Pagnanelli, ACS Appl. Mater. Interfaces, 13, 47932 (2021). doi: https://doi.org/10.1021/acsami.1c13399
  5. J. Park, H. Kim, and D. Kim, Korean J. Mater. Res., 28, 214 (2018). doi: https://doi.org/10.3740/MRSK.2018.28.4.214
  6. J. He, D. W. Shao, L. C. Zheng, L. J. Zheng, D. Q. Feng, J. P. Xu, X. H. Zhang, W. C. Wang, W. H. Wang, F. Lu, H. Dong, Y. H. Cheng, H. Liu, and R. K. Zheng, Appl. Catal., B, 203, 917 (2017). doi: https://doi.org/10.1016/j.apcatb.2016.10.086
  7. C. H. Kuo and M. H. Huang, Nano Today, 5, 106 (2010). doi: https://doi.org/10.1016/j.nantod.2010.02.001
  8. S. Mohan, B. Honnappa, A. Augustin, M. Shanmugam, C. Chuaicham, K. Sasaki, B. Ramasamy, and K. Sekar, Catalysts, 12, 445 (2022). doi: https://doi.org/10.3390/catal12040445
  9. Y. X. Gan, A. H. Jayatissa, Z. Yu, X. Chen, and M. Li, J. Nanomater., 2020, 8917013 (2020). doi: https://doi.org/10.1155/2020/8917013
  10. J. Yu, G. Wang, B. Cheng, and M. Zhou, Appl. Catal., B, 69, 171 (2007). doi: https://doi.org/10.1016/j.apcatb.2006.06.022
  11. Z. Li, I. L. Soroka, F. Min, and M. Jonsson, Dalton Trans., 47, 16139 (2018). doi: https://doi.org/10.1039/C8DT02916D
  12. S. J. Chen, X. T. Chen, Z. Xue, L. H. Li, and X. Z. You, J. Cryst. Growth, 246, 169 (2002). doi: https://doi.org/10.1016/S0022-0248(02)01902-4
  13. S. M. Pawar, J. Kim, A. I. Inamdar, H. Woo, Y. Jo, B. S. Pawar, S. Cho, H. Kim, and H. Im, Sci. Rep., 6, 21310 (2016). doi: https://doi.org/10.1038/srep21310
  14. C. V. Boone and G. Maia, Electrochim. Acta, 303, 192 (2019). doi: https://doi.org/10.1016/j.electacta.2019.02.079
  15. W. Wang, G. Zhi, L. Liu, L. Cao, J. Xie, L. Sun, L. Hao, and H. Yao, J. Nanopart. Res., 24, 98 (2022). doi: https://doi.org/10.1007/s11051-022-05481-9
  16. X. Zhang, G. Zhang, G. Wei, and Z. Su, Biosensors, 10, 131 (2020). doi: https://doi.org/10.3390/bios10100131
  17. L. Hou, C. Zhang, L. Li, C. Du, X. Li, X. F. Kang, and W. Chen, Talanta, 188, 41 (2018). doi: https://doi.org/10.1016/j.talanta.2018.05.059
  18. M. Mansournia and A. Azizi, J. Mater. Sci.: Mater. Electron., 27, 7908 (2016). doi: https://doi.org/10.1007/s10854-016-4782-0
  19. K. Liu, Q. Song, H. Xie, and Z. Ning, Int. J. Electrochem. Sci., 17, 220660 (2022). doi: https://doi.org/10.20964/2022.06.62
  20. P. Marathey, S. Khanna, R. Pati, I. Mukhopadhyay, and A. Ray, J. Mater. Res., 34, 3173 (2019). doi: https://doi.org/10.1557/jmr.2019.231
  21. Y. Yoon, K. I. Katsumata, N. Suzuki, K. Nakata, C. Terashima, K. H. Kim, A. Fujishima, and J. Hong, ACS Omega, 6, 30562 (2021). doi: https://doi.org/10.1021/acsomega.1c04251