• Title/Summary/Keyword: low-strength mortar

Search Result 238, Processing Time 0.031 seconds

Compressive strength behaviour of low-strength hollow concrete block masonry prisms

  • Syiemiong, Hopeful;Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.689-699
    • /
    • 2021
  • The present study aims to understand the behaviour of low-strength masonry prisms constructed with locally-produced low-strength hollow concrete blocks. Compression tests were conducted on masonry prisms constructed with three different mortar grades of cement-sand ratios of 1:3, 1:4.5 and 1:6 representing strong, moderately strong and weak mortar. Stress-strain curves were generated from the test results for the masonry prisms. The hollow concrete masonry units employed in this study are some of the weakest as compared to other masonry units employed by other researchers. The compressive strengths for masonry prisms with mortar grades 1:3, 1:4.5 and 1:6 are 2.21 MPa, 2.19 MPa and 2.25 MPa respectively. The results indicate that the masonry compressive strength of such low-strength hollow concrete block masonry prisms is not influenced by the mortar strength. Simple relationships to estimate the modulus of elasticity and compressive strength of masonry prisms is also proposed.

The effect of fat and oil soaking for low-strength mortar (저강도 모르타르에 있어 유지류 침지의 영향)

  • Baek, Cheol;Kim, Min-Sang;Moon, Byeong-Yong;Hwang, Chan-Woo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.113-114
    • /
    • 2016
  • In this study, various fats and oils were soaked in low-strength mortar to experiment what kind of fats and oils had the worst effect on low-strength mortar; it went as follows. For rate of change in length of fat and oil soaking, there was an increase in the order of pig fat, bio-diesel, grape seed oil, and water; in the case of olive oil it was destroyed within 56 days. For rate of change in mass, there was an increase in the order of bio-diesel, water, pig fat, grape seed oil, and olive oil. For relative motion elastic coefficient, there was a decrease in the order of olive oil, grape seed oil, and water. On the whole, pig fat, bio-diesel, and olive oil were shown to have the worst effect on low-strength mortar.

  • PDF

An Experimental Study on the Resistance of Low-Heat Cement Mortar in Chemical Attack (저발열시멘트 모르터의 호학저항성에 대한 실험적 연구)

  • 문한영;신화철;김성수;강석화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.183-186
    • /
    • 1998
  • This paper deals with 28, 56, 91 days age compressive strength and ratio of weight when OPC and Low-Heat cement mortar immersed in chemical solution. As a result of experiment, the resistance of Low-Heat Cement motar in chemical attack is more effective than that of OPC, because of lower $C_3$A content and Pozzolanic reactions. Especially in long term age compressive strength, Low-Heat cement mortar shows higher strength in all kind of chemical solution compared with compressive strength of OPC motar.

  • PDF

A Experimental Study on Early Age Compressive Strength of Cement Mortar Using Anti Freezer and Hardening Accelerator at low temperature (방동제와 경화촉진제를 사용한 저온환경하 모르타르의 초기압축강도에 관한 실험적 연구)

  • Kim, Mok-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.135-136
    • /
    • 2014
  • In this study, the experimental study on the early age compressive strength of cement mortar using anti freezer and hardening accelerator at low temperature was conducted. For this study, all of materials for experiment were kept in a low temperature for 24 hours before mortar mixing. After mortar curing at low temperature, compressive strength was measured at the early ages. Furthermore, properties of hardened cement material was analysed using TG-DTA and MIP.

  • PDF

Development of Polymer Mortar Defensive Block for Erosion Control Works (폴리머 모르터를 이용한 사면보호재의 개발)

  • 유능환;연규석;김기성;지경용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.107-112
    • /
    • 1998
  • The objective of this study was to develop a polymer mortar defensive block with high strength and durability using unsaturated polyester resin to complement defects of conventional cement mortar defensive block. Physical and mechanical properties of the polymer mortar defensive block were also investigated. Low absorptivity, high impact strength, and great bending strength of the polymer mortar defensive block was compared with those of the conventional cement defensive block. In conclusion, the polymer mortar defensive block is excellent and useful as industrial products for erosion control works.

  • PDF

Properties of Strength Development Under Various Curing Condition at Early Age of Cement Mortar Using Agent for Enduring Cold Weather (내한성 혼화제를 이용한 시멘트 모르타르의 초기양생 온도변화에 따른 강도증진 특성)

  • Han, Cheon-Goo;Hong, Sang-Hee;Kim, Hyun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 2001
  • In this study, the admixtures for agents for enduring cold weather used widely are collected and applied to cement mortar to analyze the strength development due to variation of curing temperature at early age. The test results show that anti-freezing admixture have some problems due to high chloride content, which may cause the corrosion of reinforcement embedded in concrete. However, the mortar applied by accelerator and another kind of agent for enduring cold weather produced by S company lead to delay of strength development in low temperature. Also, it is clarified that there are no significant problems for cement mortar in strength development due to low temperature if a suitable kind of agent enduring cold weather is used and cement mortar is cured for more than $7.5^{\circ}D.D$ at early age.

  • PDF

Influence of the Quality of Recycled Aggregates on Microstructures and Strength Development of Concrete

  • Moon Dae-Joong;Moon Han-Young;Kim Yang-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.875-881
    • /
    • 2004
  • The quality of recycled aggregate is affected by original concrete strength and the manufacturing process of recycled aggregates. In this study, the porosity of old and new mortar, and the compressive strength of concrete were investigated to examine the influence of recycled aggregate on the concrete. Six kinds of recycled coarse aggregates were produced from concrete blocks of differing strength levels (A:60. 1MPa, B:41.7MPa, C:25.5MPa). Original concrete strength and the bond mortar of recycled aggregate influences the pore structures of both old and new mortar. The pore size distribution of old mortar was found to be greatly affected by age, and the reduction of the porosity of bond mortar on low strength recycled aggregate increased at a greater rate than that of bond mortar on high strength recycled aggregate. The pore size distribution of new mortar in recycled aggregate concrete changed in comparison with that of new mortar in virgin aggregate concrete. The total porosity of new mortar using B level recycled aggregates was smaller than that of new mortar with A, and C level recycled aggregates. Moreover, the compressive strength of recycled aggregate concrete was found to have been affected by original concrete strength. The compressive strength of concrete only changed slightly in the porosity of new mortar over $15\%$, but increased rapidly in the porosity of new mortar fewer than $15\%$.

Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-performance Mortar (섬유복합재봉(FRP ROD)과 고강도 모르터를 이용한 철근 콘크리트 구조물의 휨 보강공법(MFRI) 공법)

  • Bae Ki-Sun;Park Sing-Hun;Lee Sang-Uk
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.59-65
    • /
    • 2005
  • This report is on the Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-Performance Mortar. The main characteristic of this system is as follow. First, the fiber rods in this system have seven times greater tensile strength than general reinforcing steel bars(re-bar) and the weight is a fifth lighter. Camels coated on the fiber rods' surfaces to improve adhesive strength and pull-out strength. Second, high strength shotcrete mortar is has very good workability and low rebound rate. After installing the Fiber Rods, Shotcrete mortar Is applied or sprayed to finish reinforcement. Finally, MFRI system has excellent fire-resisting performance and sogood tolerance against external environment by inserting fiber rods and reinforcing materials into mortar which has high compressive strength. It is applied to bridge slab, utility box and tunnel of civil engineering works, and beam and slab of building structures.

Study on the performance indices of low-strength brick walls reinforced with cement mortar layer and steel-meshed cement mortar layer

  • Lele Wu;Caoming Tang;Rui Luo;Shimin Huang;Shaoge Cheng;Tao Yang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.439-453
    • /
    • 2023
  • Older brick masonry structures generally suffer from low strength defects. Using a cement mortar layer (CML) or steel-meshed cement mortar layer (S-CML) to reinforce existing low-strength brick masonry structures (LBMs) is still an effective means of increasing seismic performance. However, performance indices such as lateral displacement ratios and skeleton curves for LBMs reinforced with CML or S-CML need to be clarified in performance-based seismic design and evaluation. Therefore, research into the failure mechanisms and seismic performance of LBMs reinforced with CML or S-CML is imperative. In this study, thirty low-strength brick walls (LBWs) with different cross-sectional areas, bonding mortar types, vertical loads, and CML/S-CML thicknesses were constructed. The failure modes, load-carrying capacities, energy dissipation capacity and lateral drift ratio limits in different limits states were acquired via quasi-static tests. The results show that 1) the primary failure modes of UBWs and RBWs are "diagonal shear failure" and "sliding failure through joints." 2) The acceptable drift ratios of Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) for UBWs can be 0.04%, 0.08%, and 0.3%, respectively. For 20-RBWs, the acceptable drift ratios of IO, LS, and CP for 20-RBWs can be 0.037%, 0.09%, and 0.41%, respectively. Moreover, the acceptable drift ratios of IO, LS, and CP for 40-RBWs can be 0.048%, 0.09%, and 0.53%, respectively. 3) Reinforcing low-strength brick walls with CML/S-CML can improve brick walls' bearing capacity, deformation, and energy dissipation capacity. Using CML/S-CML reinforcement to improve the seismic performance of old masonry houses is a feasible and practical choice.

Mathematical model of strength and porosity of ternary blend Portland rice husk ash and fly ash cement mortar

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a mathematical model for strength and porosity of mortars made with ternary blends of ordinary Portland cement (OPC), ground rice husk ash (RHA) and classified fly ash (FA). The mortar mixtures were made with Portland cement Type I containing 0-40% FA and RHA. FA and RHA with 1-3% by weight retained on a sieve No. 325 were used. Compressive strength and porosity of the blended cement mortar at the age of 7, 28 and 90 days were determined. The use of ternary blended cements of RHA and FA produced mixes with good strength and low porosity of mortar. A mathematical analysis and two-parameter polynomial model were presented for the strength and porosity estimation with FA and RHA contents as parameters. The computer graphics of strength and porosity of the ternary blend were also constructed to aid the understanding and the proportioning of the blended system.