• Title/Summary/Keyword: low-strength concrete

Search Result 1,248, Processing Time 0.023 seconds

Evaluation of Fracture Detection Function for the Concrete by Self-Diagnosis CPGFRP (자기진단 CPGFRP의 파괴예측기능 평가를 위한 콘크리트 적용실험)

  • Choi, Hyun-Soo;Park, Jin-Sub;Jnng, Min-Soo;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.27-31
    • /
    • 2003
  • To maintain serviceability of concrete structure more than proper it is necessary not only predict service life through periodical monitor but also need monitoring system to recognize optimal time and method for repair. Recently, CPGFRP, replacing some GFRP with CF, is developed and used for monitoring concrete fraction. But dramatic resistance change of CPGFRP is showed below 0.5% strain and it is not small strain in terms of monitoring micro crack in concrete. In other word, monitoring with CF is not suitable in low stress hut hight stress. In this study, we accessed applicable possibility and reliability of CPGFRP composite as monitoring sense that is proved very sensitive to stress through domestic and oversea previous study. CPGFRP composite plays a role in specimen like steel and increases flexural strength. CPGFRP composite shows resistance increasement in micro crack. In particular, CPUFRP is more sensitive than strangage in low stress. Resistance change ratio curve is very similar to strain curve so sensitivity and reliability is very excellent to monitor concrete fracture.

  • PDF

Evaluation of Fracture Detection Function for the Concrete by Self-Diagnosis CPGFRP (자기진단 CPGFRP의 파괴예측기능 평가를 위한 콘크리트 적용실험)

  • 최현수;박진섭;정민수;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.27-31
    • /
    • 2003
  • To maintain serviceability of concrete structure more than proper it is necessary not only predict service life through periodical monitor but also need monitoring system to recognize optimal time and method for repair. Recently, CPGFRP, replacing some GFRP with CF, is developed and used for monitoring concrete fraction. But dramatic resistance change of CPGFRP is showed below 0.5% strain and it is not small strain in terms of monitoring micro crack in concrete. In other word, monitoring with CF is not suitable in low stress but hight stress. In this study, we accessed applicable possibility and reliability of CPGFRP composite as monitoring sense that is proved very sensitive to stress through domestic and oversea previous study. CPGFRP composite plays a role in specimen like steel and increases flexural strength. CPGFRP composite shows resistance increasement in micro crack. In particular, CPGFRP is more sensitive than strangage in low stress. Resistance change ratio curve is very similar to strain curve so sensitivity and reliability is very excellent to monitor concrete fracture.

  • PDF

Mechanical Properties of Permeable Polymer Concrete for Permeability Pavement with Recycled Aggregate and Fiber Volume Fraction (재생골재 및 섬유 혼입률에 따른 포장용 투수성 폴리머 콘크리트의 역학적 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.69-77
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood, and increase and purification of underwater resource. This study was performed to evaluate permeability, strengths and durability of permeable polymer concrete (PPC) using recycled aggregate that is obtained from waste concrete. Also, 6mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. In the test results, regardless of kinds of aggregates and fiber contents, the compressive strength and permeability coefficient of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. The weight reduction ratios for PPC after 300 cycles of freezing and thawing were in the range of 1.6~3.8 % and 2.2~5.6 %, respectively. The weight change ratio was very low regardless of the fiber volume fraction and aggregates. The weight reduction ratios of PPC with fiber and aggregate were in the range of 1.3~2.7 % and 2.2~3.2 % after 13 weeks and was very low regardless of the fiber volume fraction and aggregates.

The Experimental Study on The Compressive Strength of Concrete Using High Quality Recycled Fine Aggregate Produced by Sulphuric Water and Low Speed Wet Abrasional (황산수와 저속습식마쇄기로 생산된 고품질 순환 잔골재의 콘크리트 압축강도에 관한 실험적 연구)

  • Choi, Duck-Jin;Lee, Dae-Guen;Kim, Ha-Suk;Kawk, Eun-Gu;Kang, Chul;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.385-388
    • /
    • 2008
  • Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. Also, alkaline water occurred from treatment process of the waste concrete is becoming the cause of environmental problem. Accordingly, this study is to develop on the high quality recycled fine aggregate produced by low speed wet abraser using sulphuric. We investigated the properties of compressive strength of the mortar which was manufactured using recycled fine aggregate containing calcined gypsum produced by earlier mentioned process. Test results indicate that concrete using recycled fine aggregate containing calcined gypsum is higher compressive strength than concrete using other sands.

  • PDF

Effect of sulfate activators on mechanical property of high replacement low-calcium ultrafine fly ash blended cement paste

  • Liu, Baoju;Tan, Jinxia;Shi, Jinyan;Liang, Hui;Jiang, Junyi;Yang, Yuanxia
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.183-192
    • /
    • 2021
  • Due to economic and environmental benefits, increasing the substitution ratio of ordinary cement by industry by-products like fly ash (FA) is one of the best approaches to reduce the impact of the concrete industry on the environment. However, as the substitution rate of FA increases, it will have an adverse impact on the performance of cement-based materials, so the actual substitution rate of FA is limited to around 10-30%. Therefore, in order to increase the early-age strength of high replacement (30-70%) low-calcium ultrafine FA blended cement paste, sodium sulfate and calcium sulfate dihydrate were used to improve the reactivity of FA. The results show that sodium sulfate has a significant enhancement effect on the strength of the composite pastes in the early and late ages, while calcium sulfate dihydrate has only a slight effect in the late ages. The addition of sodium sulfate in the cement-FA blended system can enhance the gain rate of non-evaporation water, and can decrease the Ca(OH)2 content. In addition, when the sulfate chemical activators are added, the ettringite content increases, and the surface of the FA is dissolved and hydrated.

Experimental investigation of existing R/C frames strengthened by high dissipation steel link elements

  • Karalis, Apostolos A.;Stylianidis, Kosmas C.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.143-160
    • /
    • 2013
  • This paper presents the results of an experimental program concerning the efficiency of a specific strengthening technique which utilizes a small steel link element connected to the R/C frame through bracing elements. Brittle types of failure, especially at the connections between steel and concrete elements, can be avoided by appropriate design of the local details. Five single storey one bay R/C frames scaled 1:3 were constructed according to older codes with substandard details. The first one was a typical bare reference frame. The other four were identical to the first one, strengthened by steel bracing elements. The behavior of the strengthened frames is described with respect to the reference bare frame. The concrete frames were constructed according to older code provisions by the use of smooth steel bars, low strength concrete, sparsely spaced stirrups and substandard details. The strengthening scheme aimed to the increase of both strength and deformation capacity of the original R/C frame. The inelastic deformations are purposely concentrated to a short steel link element connecting the steel bracing to the R/C frame. The results show that the steel link element can increase considerably the strength and the energy dissipation capacity of the frame.

A Study on Properties of Sound Absorbing Materials with Characteristics of Exhaust-gas Purge (배기가스를 정화하는 흡음재의 특성에 관한 연구)

  • 이승한;황보광수;장석수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.935-940
    • /
    • 2001
  • This study search for absorbing sound and exhaust-gas which aims to manufacture continuous void by using clay and foam, the surface of materials is covered with $TiO_{2}$ powder as heat treatment. According to the results of the experiment, the increase of thickness of manufactured sound absorbing materials caused the increase of absorption rate in the range of low and middle sound and thus it can be an important factor of improving absorption rate. Sound absorbing materials could satisfy 70% of the average of sound absorption ratio in 7cm thickness. Also, the manufactured sound absorbing materials is covered with $TiO_{2}$ showed an excellency in the clarification of exhaust-gas under ultraviolet rays treatment when 70% of removal rate and about 10% of generation rate of $NO_{2}$ is settled by the flow of 2 $\ell$/min NO gas. Especially, manufactured sound absorbing materials could improve compressive strength of continuos porous concrete. in the case of 7% bubble addition, when the substitution rate of coagulator was 30% and 20%, compressive strength was 45kgf/$cm^{2}$ and 65kgf/$cm^{2}$ respectively. As the substitution rate of coagulator reducing, compressive strength increased after preforming burnt clay.

  • PDF

Experimental study on seismic performance of steel reinforced concrete T-shaped columns

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang;Leon, Roberto T.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.339-353
    • /
    • 2020
  • This study investigates the seismic performance of steel reinforced concrete (SRC) T-shaped columns under low cyclic loading tests. Based on test results of ten half-scale column specimens, failure patterns, hysteretic behavior, skeleton curves, ultimate strength, ductility, stiffness degradation and energy dissipation capacity were analyzed. The main variables included loading angles, axial compression ratios and steel ratios. The test results show that the average values of the ductility factor and the equivalent viscous damping coefficient with respect to the failure of the columns were 5.23 and 0.373, respectively, reflecting good seismic performance. The ductility decreased and the initial stiffness increased as the axial compression ratio of the columns increased. The strength increased with increasing steel ratio, as expected. The columns displaced along the web had higher strength and initial stiffness, while the columns displaced along the flange had better ductility and energy dissipation capacity. Based on the test and analysis results, a formula is proposed to calculate the effective stiffness of SRC T-shaped columns.

Optimum tuned mass damper design for preventing brittle fracture of RC buildings

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.137-155
    • /
    • 2013
  • Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to structures with low compressive strength of concrete may not be possible if the weight of the TMD is too much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce maximum shear forces below the values proposed in design regulations. Using the formulas for frequency and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle fracture by reducing shear force in additional to other time and frequency responses. The proposed method is feasible for the retrofit of weak structures with insufficient compressive strength of concrete.

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.