• Title/Summary/Keyword: low-rise structures

Search Result 346, Processing Time 0.021 seconds

Collapse response assessment of low-rise buildings with irregularities in plan

  • Manie, Salar;Moghadam, Abdoreza S.;Ghafory-Ashtiany, Mohsen
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.49-71
    • /
    • 2015
  • The present paper aims at evaluating damage and collapse behavior of low-rise buildings with unidirectional mass irregularities in plan (torsional buildings). In previous earthquake events, such buildings have been exposed to extensive damages and even total collapse in some cases. To investigate the performance and collapse behavior of such buildings from probabilistic points of view, three-dimensional three and six-story reinforced concrete models with unidirectional mass eccentricities ranging from 0% to 30% and designed with modern seismic design code provisions specific to intermediate ductility class were subjected to nonlinear static as well as extensive nonlinear incremental dynamic analysis (IDA) under a set of far-field real ground motions containing 21 two-component records. Performance of each model was then examined by means of calculating conventional seismic design parameters including the response reduction (R), structural overstrength (${\Omega}$) and structural ductility (${\mu}$) factors, calculation of probability distribution of maximum inter-story drift responses in two orthogonal directions and calculation collapse margin ratio (CMR) as an indicator of performance. Results demonstrate that substantial differences exist between the behavior of regular and irregular buildings in terms of lateral load capacity and collapse margin ratio. Also, results indicate that current seismic design parameters could be non-conservative for buildings with high levels of plan eccentricity and such structures do not meet the target "life safety" performance level based on safety margin against collapse. The adverse effects of plan irregularity on collapse safety of structures are more pronounced as the number of stories increases.

Seismic vulnerability assessment of low-rise irregular reinforced concrete structures using cumulative damage index

  • Shojaei, Fahimeh;Behnam, Behrouz
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.407-422
    • /
    • 2017
  • Evaluating seismic performance of urban structures for future earthquakes is one of the key prerequisites of rehabilitation programs. Irregular structures, as a specific case, are more susceptible to sustain earthquake damage than regular structures. The study here is to identify damage states of vertically irregular structures using the well-recognized Park-Ang damage index. For doing this, a regular 3-story reinforced concrete (RC) structure is first designed based on ACI-318 code, and a peak ground acceleration (PGA) of 0.3 g. Some known vertical irregularities such as setback, short column and soft story are then applied to the regular structure. All the four structures are subjected to seven different earthquakes accelerations and different amplitudes which are then analyzed using nonlinear dynamic procedure. The damage indices of the structures are then accounted for using the pointed out damage index. The results show that the structure with soft story irregularity sustains more damage in all the earthquake records than the other structures. The least damage belongs the regular structure showing that different earthquake with different accelerations and amplitudes have no significant effect on the regular structures.

Study of Urban Land Cover Changes Relative to Demographic and Residential Form Changes: A Case Study of Wonju City, Korea

  • Han, Gab-Soo;Kim, Mintai
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.4
    • /
    • pp.288-296
    • /
    • 2015
  • In many very high density cities in Asia in which there is limited area to expand, growth is forced upward as well as outward. Densely packed detached houses and low-rise buildings are replaced by lower density high-rises, leaving open spaces between high-rise buildings. Through this process, areas that formerly did not have much green space gain valuable green spaces, and new ecological corridors and patches are created. In this study, the demographic and housing-type changes of Wonju City were delineated using land use maps, aerial images, census data, and other administrative data. Green area changes were calculated using land cover data derived from multi-year Landsat TM satellite imagery. The values were then compared against demographic and housing-type changes for each administrative unit. The overall results showed a decrease of forested area in the city and an increase of developed area. Urban sprawl was clearly visible in many of the suburban areas. However, as expected, we also detected areas in which greenness did not decrease when the population greatly increased. These areas were characterized by residential building complexes of ten or more stories. If an equal number of housing units had been built as detached houses, these areas would not have kept as much green space. Our research result showed that high-density and high-rise residential structures can offer an alternative means to protect or create urban green spaces in high-density urban environments.

Vibration Control Performance Evaluation of Hybrid Mid-Story Isolation System for a Tall Building (하이브리드 중간층 지진격리시스템의 고층 건물 진동 제어 성능 평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.37-44
    • /
    • 2018
  • A base isolation system is widely used to reduce seismic responses of low-rise buildings. This system cannot be effectively applied to high-rise buildings because the initial stiffness of the high-rise building with the base isolation system maintains almost the same as the building without the base isolation system to set the yield shear force of the base isolation system larger than the design wind load. To solve this problem, the mid-story isolation system was proposed and applied to many buildings. The mid-story isolation system has two major objectives; first to reduce peak story drift and second to reduce peak drift of the isolation story. Usually, these two objectives are in conflict. In this study, a hybrid mid-story isolation system for a tall building is proposed. A MR (magnetorheological) damper was used to develop the hybrid mid-story isolation system. An existing building with mid-story isolation system, that is "Shiodome Sumitomo Building" a high rise building having a large atrium in the lower levels, was used for control performance evaluation of the hybrid mid-story isolation system. Fuzzy logic controller and genetic algorithm were used to develop the control algorithm for the hybrid mid-story isolation system. It can be seen from analytical results that the hybrid mid-story isolation system can provide better control performance than the ordinary mid-story isolation system and the design process developed in this study is useful for preliminary design of the hybrid mid-story isolation system for a tall building.

The effect of mainshock-aftershock on the residual displacement of buildings equipped with cylindrical frictional damper

  • Mirtaheri, Masoud;Amini, Mehrshad;Rad, Moosa Doosti
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.515-527
    • /
    • 2017
  • Recently, Friction dampers become popular due to the desirable performance in the energy dissipation of lateral loads. A lot of research which has been conducted on these dampers results in developing friction dampers with low sensitivity to the number of cycles and temperature increases. Friction dampers impose high residual drifts to the buildings because of low post-yield stiffness of the damper which results from increasing lateral displacement and period of buildings. This issue can be more critical under strong aftershocks which results in increasing of structural damages. In this paper, in addition to the assessment of aftershock on steel buildings equipped with friction dampers, methods for controlling residual drifts and decreasing the costs of retrofitting are investigated. Utilizing rigid connections as a lateral dual system and activating lateral stiffness of gravity columns by adding elastic braces are as an example of effective methods investigated in this research. The results of nonlinear time history analyses on the low to medium rise steel frames equipped with friction dampers illustrate a rise in residual drifts as the result of aftershocks. In addition, the results show that different slip loads of friction damper can affect the residual drifts. Furthermore, elastic stories in comparison to rigid connections can reduce residual drifts of buildings in an effective fashion, when most slip loads of friction dampers are considered.

Design of a Steel Structural Building Using Double Split Tee Connections without Shear Tabs (전단탭이 없는 상·하부 스플릿 티 접합부를 적용한 강구조물의 설계)

  • Yang, Jae Guen;Kim, Yong Boem
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.85-96
    • /
    • 2016
  • Double split tee connection has various strength, stiffness, and energy dissipation capacity according to changes of thickness of T-stub flange and gauge distance, number, and diameter of high-strength bolt. If the double split tee connection is applied to a low- or medium-rise steel structure, a shear tab can't be applied for supporting shear force because of geometrical limitation. So it is required to propose details of improved double split tee connection to support shear force as well as flexural force. This research was performed to see if enough rotational stiffness is found when the double split tee connection without shear tab which was obtained through analytic and experimental researches by Yang et al. is applied to a low- or medium-rise steel structure. Also, it was seen if the low- or medium-rise steel structure having double split tee connection without shear tab has safe structural behavior, as well as material saving effect.

Parametric study on energy demands for steel special concentrically braced frames

  • Dogru, Selcuk;Aksar, Bora;Akbas, Bulent;Shen, Jay
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.265-276
    • /
    • 2017
  • Structures are designed in such a way that they behave in a nonlinear manner when subject to strong ground motions. Energy concepts have been widely used to evaluate the structural performance for the last few decades. Energy based design can be expressed as the balance of energy input and the energy dissipation capacity of the structure. New research is needed for multi degree of freedom systems (MDOFs)-real structures- within the framework of the energy based design methodology. In this paper, energy parameters are evaluated for low-, medium- and high-rise steel special concentrically braced frames (SCBFs) in terms of total energy input and hysteretic energy. Nonlinear dynamic time history analyses are carried out to assess the variation of energy terms along the height of the frames. A seismic energy demand spectrum is developed and hysteretic energy distributions within the frames are presented.

A comparative study on the subspace based system identification techniques applied on civil engineering structures

  • Bakir, Pelin Gundes;Alkan, Serhat;Eksioglu, Ender Mete
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.153-167
    • /
    • 2011
  • The Subspace based System Identification Techniques (SSIT) have been very popular within the research circles in the last decade due to their proven superiority over the other existing system identification techniques. For operational (output only) modal analysis, the stochastic SSIT and for operational modal analysis in the presence of exogenous inputs, the combined deterministic stochastic SSIT have been used in the literature. This study compares the application of the two alternative techniques on a typical school building in Istanbul using 100 Monte Carlo simulations. The study clearly shows that the combined deterministic stochastic SSIT performs superior to the stochastic SSIT when the techniques are applied on noisy data from low to mid rise stiff structures.

Aspects of the use of proper orthogonal decomposition of surface pressure fields

  • Baker, C.J.
    • Wind and Structures
    • /
    • v.3 no.2
    • /
    • pp.97-115
    • /
    • 2000
  • The technique of proper orthogonal decomposition is potentially useful in specifying the fluctuating surface pressure field around structures. However there has been a degree of controversy over whether or not the calculated modes have physical meanings. This paper addresses this issue through consideration of the results of full scale experiments, and through an analytical investigation. It is concluded that the lower, most energetic modes are likely to reflect different fluctuating flow mechanisms, although no mode is likely to be associated with just one flow mechanism or vice versa. The higher, less energetic modes are likely to represent interactions between different flow mechanisms, and to be significantly affected by the number of measurement points and measurement errors. The paper concludes with a brief description of the application of POD to the problem of building ventilation, and the calculation of cladding pressures.

Effects of damping ratio on dynamic increase factor in progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.677-690
    • /
    • 2016
  • In this paper, the effect of damping ratio on nonlinear dynamic analysis response and dynamic increase factor (DIF) in nonlinear static analysis of structures against column removal are investigated and a modified empirical DIF is presented. To this end, series of low and mid-rise moment frame structures with different span lengths and number of storeys are designed and the effect of damping ratio in DIF is investigated, performing several nonlinear static and dynamic analyses. For each damping ratio, a nonlinear dynamic analysis and a step by step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived. The results of the analysis reveal that DIF is decreased with increasing damping ratio. Finally, an empirical formula is recommended that relates to damping ratio. Therefore, the new modified DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of moment frame buildings with different damping ratios.