• 제목/요약/키워드: low-power sensing method

검색결과 98건 처리시간 0.026초

상황인지 기반 스마트 저전력 센싱 기술 (Low Power Smart Sensing Algorithm based on Context Aware)

  • 김성중;박우출;서해문;박만규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.44-47
    • /
    • 2011
  • In this paper, we propose context-aware based on Low Power Sensing Algorithm. The proposed sensing algorithm reduces power consumptions using low-power sensing algorithms and low-power sensing protocols. Experimental results show that the average power consumption of the proposed method is up to half consumption that of the conventional method.

바이패스 스위치와 저항센서를 이용한 저손실 전류 측정방법 (Low Power-loss Current Measurement Technique Using Resistive Sensor and Bypass Switch)

  • 이화석;다니엘;박종후
    • 전력전자학회논문지
    • /
    • 제17권5호
    • /
    • pp.416-422
    • /
    • 2012
  • This paper proposes a low power-loss current measurement using a resistor and bypass switch. Conventional current sensing method using a resistor has a disadvantage of power loss which degrades the efficiency of the entire systems. On the other hand, proposed measurement technique operating with bypass-switch connected in parallel with sensing resistor can reduce power loss significantly the current sensor. The propose measurement works for discrete-time sampling of current sensing. Even while the analog-digital conversion does not occur at the controller, the sensing voltage across the sensor still causes ohmic conduction loss without information delivery. Hence, the bypass switch bypasses the sensing current with a small amount of power loss. In this paper, a 90[W] prototype hardware has been implemented for photovoltaic MPPT experimental verification of the proposed low power-loss current measurement technique. From the results, it can be seen that PV power observation is successfully done with the proposed method.

인터널 노드 변환을 최소화시킨 저전력 플립플롭 회로 (Low Power Flip-Flop Circuit with a Minimization of Internal Node Transition)

  • 최형규;윤수연;김수연;송민규
    • 반도체공학회 논문지
    • /
    • 제1권1호
    • /
    • pp.14-22
    • /
    • 2023
  • 본 논문에서는 dual change-sensing 기법을 사용하여 내부 노드 변환을 최소화시킨 저전력 플립플롭 회로를 제안한다. 제안하는 Dual Change-Sensing Flip-Flop(DCSFF)은 데이터 변환이 존재하지 않는 경우, 기존에 존재하던 플립플롭들 중 동적 전력 소모가 가장 낮다. 65nm CMOS 공정을 사용한 측정 결과에 따르면, conventional Transmission Gate Flip-Flop(TGFF)와 비교하여 data activity 가 0% 와 100% 일때, 각각 98%와 32%의 감소된 전력 소모를 보였다. 또한 Change-Sensing Flip-lop(CSFF)과 비교하여 제안하는 DCSFF 는 30% 의 낮은 전력 소모를 보였다.

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

A High Voltage, High Side Current Sensing Boost Converter

  • Choi, Moonho;Kim, Jaewoon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.36-37
    • /
    • 2013
  • This paper presents high voltage operation sensing boost converter with high side current. Proposed topology has three functions which are high voltage driving, high side current sensing and low voltage boost controller. High voltage gate driving block provides LED dimming function and switch function such as a load switch of LED driver. To protect abnormal fault and burn out of LED bar, it is applied high side current sensing method with high voltage driver. This proposed configuration of boost converter shows the effectiveness capability to LED driver through measurement results.

  • PDF

아날로그 회로로 구현가능한 평균전류제어 저손실 bypass 전류센싱방법 (The Analog-circuited Low-loss Bypass Current Sensing Method for Average Current Mode Control)

  • 김석희;최병민;박종후;전희종
    • 전력전자학회논문지
    • /
    • 제19권2호
    • /
    • pp.133-138
    • /
    • 2014
  • This paper proposes a low power-loss averaging current mode control using a resistor and bypass switch. Generally, current sensing method using a resistor has a disadvantage of power loss which degrades the efficiency of the entire systems. On the other hand, proposed measurement technique operating with bypass-switch connected in parallel with sensing resistor can reduce power loss significantly the current sensor. An analog-circuited bypass driver is implemented and used along with an average-circuit mode controller. The bypass switch bypasses the sensing current with a small amount of power loss. In this paper, a 50[W] prototype average current mode boost converter has been implemented for the experimental verification.

저용량 가전용 40V급 Power MOSFET 소자의 설계 및 제작에 관한 연구 (A Design of 40V Power MOSFET for Low Power Electronic Appliances)

  • 강이구;안병섭;남태진;김범준;이용훈;정헌석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.115-115
    • /
    • 2009
  • Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The Power MOSFET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper, we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 40 V power MOSFET by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration $1.5\times10^{14}\;cm^{-3}$, size of $600\;{\mu}m^2$ with $4.5\;{\Omega}$, and off-state leakage current below $50\;{\mu}A$. We offer the layout of the proposed Power MOSFET to process actually. The offerd design and optimization methods are meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.

  • PDF

애드혹 인지무선시스템을 위한 효과적 에너지 검출 방식 (Energy Efficient Spectrum Sensing for Ad-hoc Cognitive Radio)

  • 이소영;김은철;김진영
    • 한국ITS학회 논문지
    • /
    • 제9권6호
    • /
    • pp.113-119
    • /
    • 2010
  • 애드 혹 네트워크를 구성하는 무선기기들은 일반적으로 소출력 기기로서 ISM대역을 사용하였다. 그러나 무선 서비스의 사용률이 급격하게 증가함에 따라 ISM대역의 주파수 부족현상이 나타나게 되었고 주파수 부족현상을 해소하기 위하여 애드 혹 인지무선시스템이 제안되었다. 본 논문은 소출력 무선기기로 구성된 애드 혹 무선인지 시스템에서 전력소모를 줄이면서 효과적으로 유휴주파수를 검출하기 위한 스펙트럼 센싱을 제안하였다. 본 논문에서 면허 사용자와 CR 기기 사이의 무선 채널은 가우시안 (Gaussian) 채널로 모델링 하였으며 모든 CR 기기와 면허 사용자와의 거리는 모두 다르다고 가정하였고, 애드 혹 네트워크를 구성하는 CR 기기간의 채널은 완벽한 (Perfect) 채널이며 거리는 근거리로 가정하였다. CR 기기는 에너지 검출 방식을 사용하여 면허 사용자의 스펙트럼을 센싱하였다. 실험결과 상위 레벨의 에너지 값을가진 CR 기기의 센싱정보를 결합한 센싱방법이 모든 CR 기기의 센싱정보를 결합한 센싱방법에 비하여 높은 스펙트럼 센싱 성능을 나타내었으며, 향후 제안된 스펙트럼 센싱 방법을 통해 저소비전력으로 효과적인 스펙트럼 센싱을 수행하는데 참조 할 수 있다.

고전압 전력소자를 보호하기 위한 Sense FET 설계방법 (A Design Method on Power Sense FET to Protect High Voltage Power Device)

  • 경신수;서준호;김요한;이종석;강이구;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제22권1호
    • /
    • pp.12-16
    • /
    • 2009
  • Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The sense FET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper, we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 450 V power MOSFET by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration $1.5{\times}10^{14}cm^{-3}$, size of $600{\um}m^2$ with $4.5\;{\Omega}$, and off-state leakage current below $50{\mu}A$. We offer the layout of the proposed sense FET to process actually. The offerd design and optimization methods are meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.

Autonomous hardware development for impedance-based structural health monitoring

  • Grisso, Benjamin L.;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.305-318
    • /
    • 2008
  • The development of a digital signal processor based prototype is described in relation to continuing efforts for realizing a fully self-contained active sensor system utilizing impedance-based structural health monitoring. The impedance method utilizes a piezoelectric material bonded to the structure under observation to act as both an actuator and sensor. By monitoring the electrical impedance of the piezoelectric material, insights into the health of the structured can be inferred. The active sensing system detailed in this paper interrogates a structure utilizing a self-sensing actuator and a low cost impedance method. Here, all the data processing, storage, and analysis is performed at the sensor location. A wireless transmitter is used to communicate the current status of the structure. With this new low cost, field deployable impedance analyzer, reliance on traditional expensive, bulky, and power consuming impedance analyzers is no longer necessary. A complete power analysis of the prototype is performed to determine the validity of power harvesting being utilized for self-containment of the hardware. Experimental validation of the prototype on a representative structure is also performed and compared to traditional methods of damage detection.