• Title/Summary/Keyword: low-power hardware implementation

Search Result 143, Processing Time 0.03 seconds

Low-Power Design of Hardware One-Time Password Generators for Card-Type OTPs

  • Lee, Sung-Jae;Lee, Jae-Seong;Lee, Mun-Kyu;Lee, Sang-Jin;Choi, Doo-Ho;Kim, Dong-Kyue
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.611-620
    • /
    • 2011
  • Since card-type one-time password (OTP) generators became available, power and area consumption has been one of the main issues of hardware OTPs. Because relatively smaller batteries and smaller chip areas are available for this type of OTP compared to existing token-type OTPs, it is necessary to implement power-efficient and compact dedicated OTP hardware modules. In this paper, we design and implement a low-power small-area hardware OTP generator based on the Advanced Encryption Standard (AES). First, we implement a prototype AES hardware module using a 350 nm process to verify the effectiveness of our optimization techniques for the SubBytes transform and data storage. Next, we apply the optimized AES to a real-world OTP hardware module which is implemented using a 180 nm process. Our experimental results show the power consumption of our OTP module using the new AES implementation is only 49.4% and 15.0% of those of an HOTP and software-based OTP, respectively.

A Study on the Implementation of Low Power DCT Architecture for MPEG-4 AVC (저전력 DCT를 이용한 MPEG-4 AVC 압축에 관한 연구)

  • Kim, Dong-Hoon;Seo, Sang-Jin;Park, Sang-Bong;Jin, Hyun-Joon;Park, Nho-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.371-372
    • /
    • 2007
  • In this paper we present performance and implementation comparisons of high performance two dimensional forward and inverse Discrete Cosine Transform (2D-DCT/IDCT) algorithm and low power algorithm for $8{\times}8$ 20 DCT and quantization based on partial sum and its corresponding hardware architecture for FPGA in MPEG-4. The architecture used in both low power 20 DCT and 2D IDCT is based on the conventional row-column decomposition method. The use of Fast algorithm and distributed arithmetic(DA) technique to implement the DCT/IDCT reduces the hardware complexity. The design was made using Mentor Graphics Tools for design entry and implementation. Mentor Graphics ModelSim SE6.1f was used for Verilog HDL entry, behavioral Simulation and Synthesis. The 2D DCT/IDCT consumes only 50% of the Operating Power.

  • PDF

A Low-area and Low-power 512-point Pipelined FFT Design Using Radix-24-23 for OFDM Applications

  • Yu, Jian;Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.475-480
    • /
    • 2018
  • In OFDM-based systems, FFT is a critical component since it occupies large area and consumes more power. In this paper, we present a low hardware-cost and low power 512-point pipelined FFT design method for OFDM applications. To reduce the number of twiddle factors and to choose simple design architecture, the radix-$2^4-2^3$ algorithm are exploited. For twiddle factor multiplication, we propose a new canonical signed digit (CSD) complex multiplier design method to minimize the hardware-cost. In hardware implementation with Intel FPGA, the proposed FFT design achieves more than about 28% reduction in gate count and 18% reduction in power consumption compared to the previous approaches.

Hardware Implementation of a Logic Based Expert System for Power System Fault Diagnosis (전력계통 고장진단을 위한 논리기반 전문가시스템의 하드웨어 구현)

  • Park, Young-Moon;Jung, Queue-Wan
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.930-932
    • /
    • 1997
  • Logic Based Expert System (LBES) has the advantage of real-time inference. This paper shows a LBES for fault diagnosis of power system and proposes the hardware implementation of LBES. Besides, having a power system topology in memory chip, proposed system is apt to be applicable to other system with low changing cost.

  • PDF

Analysis of implementation of SHA-1 hash function for Low power Sensor Network (저전력 센서 네트워크 노드용 SHA-1 해쉬함수 구현 분석)

  • Choi, Yong-Je;Lee, Hang-Rok;Kim, Ho-Won
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.201-202
    • /
    • 2006
  • In this paper, we achieved software and hardware implementation of SHA-1 hash function for sensor network. We implemented the software to be compatible with TinySec. In hardware design, we optimized operation logics for small area of hardware and minimized data transitions of register memory for low power design. Designed the software and hardware is verified on commercial sensor motes and our secure motes respectively.

  • PDF

Design of Input/Output Interface for ARM/AMBA based Board Using VHDL

  • Ryoo, Dong-Wan;Lee, Jeon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.131.1-131
    • /
    • 2001
  • At the present time, multimedia chip, internet application, and network equipment is designed by using ARM core. Because it has a good debugging, software compiler and needed low power. We must process a data coding to send a multimedia data by real time. So need to connect software and hardware algorithm. In this research, We design interface for ARM9/AMBA based board using VHDL for these function implementation. The board is used the ARM company´s ARM940T for software function implementation and Xilinx company´s Virtex E2000 for hardware function algorithm. The various hardware algorithm (ME,ME,DCT) block for performance can be implemented on this system.

  • PDF

Design and Implementation of a Low Power Chip with Robust Physical Unclonable Functions on Sensor Systems (센서 시스템에서의 고신뢰 물리적 복제방지 기능의 저전력 칩 설계 및 구현)

  • Choi, Jae-min;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-63
    • /
    • 2018
  • Among Internet of things (IoT) applications, the most demanding requirements for the widespread realization of many IoT visions are security and low power. In terms of security, IoT applications include tasks that are rarely addressed before such as secure computation, trusted sensing, and communication, privacy, and so on. These tasks ask for new and better techniques for the protection of data, software, and hardware. An integral part of hardware cryptographic primitives are secret keys and unique IDs. Physical Unclonable Functions(PUF) are a unique class of circuits that leverage the inherent variations in manufacturing process to create unique, unclonable IDs and secret keys. In this paper, we propose a low power Arbiter PUF circuit with low error rate and high reliability compared with conventional arbiter PUFs. The proposed PUF utilizes a power gating structure to save the power consumption in sleep mode, and uses a razor flip-flop to increase reliability. PUF has been designed and implemented using a FPGA and a ASIC chip (a 0.35 um technology). Experimental results show that our proposed PUF solves the metastability problem and reduce the power consumption of PUF compared to the conventional Arbiter PUF. It is expected that the proposed PUF can be used in systems required low power consumption and high reliability such as low power encryption processors and low power biomedical systems.

Low-Power H.264 Decoder Design for Digital Multimedia Broadcasting (디지털 멀티미디어 방송을 위한 저전력 H.264 복호기 설계)

  • Lee, Seong-Soo;Lee, Won-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.62-68
    • /
    • 2007
  • H.264 video compression in digital multimedia broadcasting (DMB) shows significantly high compression ratio over conventional algorithms, while its required hardware cost and power consumption are also $3{\sim}5$ times larger. Consequently, low-hardware-cost and low-power H.264 decoder SoC is essential for commercial digital multimedia broadcasting terminals. This paper describes low-power design and implementation of core blocks in H.264 decoder SoC.

Secure Hardware Implementation of ARIA Based on Adaptive Random Masking Technique

  • Kang, Jun-Ki;Choi, Doo-Ho;Choi, Yong-Je;Han, Dong-Guk
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.76-86
    • /
    • 2012
  • The block cipher ARIA has been threatened by side-channel analysis, and much research on countermeasures of this attack has also been produced. However, studies on countermeasures of ARIA are focused on software implementation, and there are no reports about hardware designs and their performance evaluation. Therefore, this article presents an advanced masking algorithm which is strong against second-order differential power analysis (SODPA) and implements a secure ARIA hardware. As there is no comparable report, the proposed masking algorithm used in our hardware module is evaluated using a comparison result of software implementations. Furthermore, we implement the proposed algorithm in three types of hardware architectures and compare them. The smallest module is 10,740 gates in size and consumes an average of 47.47 ${\mu}W$ in power consumption. Finally, we make ASIC chips with the proposed design, and then perform security verification. As a result, the proposed module is small, energy efficient, and secure against SODPA.

Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

  • Choi, Do Young;Oh, Jung Hwan;Kim, Ji Kwang;Lee, Seung Eun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4648-4663
    • /
    • 2020
  • This paper proposes the Lempel-Ziv 4(LZ4) compression accelerator optimized for scale-out servers in data centers. In order to reduce CPU loads caused by compression, we propose an accelerator solution and implement the accelerator on an Field Programmable Gate Array(FPGA) as heterogeneous computing. The LZ4 compression hardware accelerator is a fully pipelined architecture and applies 16 dictionaries to enhance the parallelism for high throughput compressor. Our hardware accelerator is based on the 20-stage pipeline and dictionary architecture, highly customized to LZ4 compression algorithm and parallel hardware implementation. Proposing dictionary architecture allows achieving high throughput by comparing input sequences in multiple dictionaries simultaneously compared to a single dictionary. The experimental results provide the high throughput with intensively optimized in the FPGA. Additionally, we compare our implementation to CPU implementation results of LZ4 to provide insights on FPGA-based data centers. The proposed accelerator achieves the compression throughput of 639MB/s with fine parallelism to be deployed into scale-out servers. This approach enables the low power Intel Atom processor to realize the Hadoop storage along with the compression accelerator.