• Title/Summary/Keyword: low-power dissipation

Search Result 341, Processing Time 0.029 seconds

A Design of Improved Current Subtracter and Its Application to Norton Amplifier (개선된 전류 감산기와 이를 이용한 노튼(Norton) 증폭기의 설계)

  • Cha, Hyeong-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.82-90
    • /
    • 2011
  • A novel class AB current subtracter(CS) and its application to Norton amplifier(NA) for low-power current-mode signal processing are designed. The CS is composed of a translinear cell, two current mirrors, and two common-emitter(CB) amplifiers. The principle of the current subtraction is that the difference of two input current applied translinear cell get from the current mirror, and then the current amplify through CB amplifier with ${\beta}$ times. The NA is consisted of the CS and wideband voltage buffer. The simulation results show that the CS has current input impedance of $20{\Omega}$, current gain of 50, and current input range of $i_{IN1}$ > $i_{IN2}{\geq}4I_B$. The NA has unit gain frequency of 312 MHz, transresistance of 130 dB, and power dissipation of 4mW at ${\pm}2.5V$ supply voltage.

Reactive Ion Etching and Magnetically Enhanced Reactive Ion Etching Process of Low-K Methylsilsequioxane Insulator Film using $CF_4$ and $O_2$ ($CF_4$$O_2$를 이용한 저유전율 물질인 Methylsilsequioxane의 RIE와 MERIE 공정)

  • Jung, Do-Hyun;Lee, Yong-Soo;Lee, Kil-Hun;Kim, Kwang-Hun;Lee, Hee-Woo;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1491-1493
    • /
    • 2000
  • Continuing improvement of microprocessor performance involves in the device size. This allow greater device speed, an increase in device packing density, and an increase in the number of functions that can reside on a single chip. However this has led to propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance(RC) coupling become significant due to increased wiring capacitance, especially interline capacitance between the metal lines on the same metal level. So, MSSQ which has the permittivity between 2.5-3.2 is used to prevent from these problems. For pattering MSSQ(Methylsilsequioxane), we use RIE(Reactive Ion Etching) and MERIE(Magnetically enhanced Reactive Ion Etching) which could provide good anisotropic etching. In this study, we optimized the flow rate of $CF_{4}/O_2$ gas, RF power to obtain the best etching rate and roughness and also analyzed the etching result using $\alpha$-step profilemeter, SEM, infrared spectrum and AFM.

  • PDF

Thermal Management Impact of Heat Conductive Layers on Ga2O3 Schottky Barrier Diodes (열전도층이 Ga2O3 Schottky Barrier Diodes에 미치는 방열 영향 분석)

  • Ye-Jin Kim;Geon-Hee Lee;Min-Yeong Kim;Se-Rim Park;Seung-Hwan Chung;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.657-661
    • /
    • 2024
  • Gallium oxide (Ga2O3) is emerging as a next-generation power semiconductor material due to its excellent electrical properties, including an ultra-wide bandgap of approximately 4.8 eV and a breakdown electric field of about 7 MV/cm. However, its low thermal conductivity of around 0.13 W/cmK presents significant challenges to the performance and reliability of Ga2O3-based devices. In this study, we employed the Silvaco TCAD simulator to analyze the thermal and electrical characteristics of Ga2O3 Schottky barrier diodes (SBDs) with heat sinks of varying thermal conductivities. The results demonstrate that heat sinks with higher thermal conductivity effectively mitigate the temperature rise in the device, leading to an increase in current density. The limitation in heat dissipation due to parasitic on-state resistance not only affects device performance but also impacts long-term reliability. Therefore, this study contributes to the development of effective thermal management strategies for Ga2O3-based power semiconductors.

Design of a 2.4GHz CMOS Low Noise Amplifier (2.4GHz CMOS 저잡음 증폭기)

  • 최혁환;오현숙;김성우;임채성;권태하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.106-113
    • /
    • 2003
  • In this paper, we proposed low noise amplifier for 2.4GHz ISM frequency with CMOS technology. The property of noise and gain is improved by cascode architecture. The architecture, which common source output of cascode is connected to input of parallel MOS, reduce IM. The LNA results based on Hynix 0.35${\mu}{\textrm}{m}$ 2poly 4metal CMOS processor with a 3.3V supply. It achieves a gain of 13dB, noise figure of 1.7dB, IP3 of 8dBm, Input/output matching of -31dB/-28dB, reverse isolation of -25dB. and power dissipation of 4.7mW with HSPICE simulation. The size of layout is smaller than 2 ${\times}$ 2mm with Mentor.

Interaction of DEMS with H-terminated Si(001) surface : a first principles (DEMS와 H-terminated Si (001) 표면의 상호작용: 제일원리연구)

  • Kim, Dae-Hyun;Kim, Dae-Hee;Park, So-Yeon;Seo, Hwa-Il;Lee, Do-Hyeong;Kim, Yeong-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.117-117
    • /
    • 2009
  • 최근 고집적화 구조는 저항(resistance)과 정전용량 (capacitance)에 의한 신호 지연 (RC delay) 증가로 인한 혼선 (cross-talk noise)과 전력소모 (power dissipation)등의 문제를 발생시킨다. 칩 성능에 영향을 미치는 제한인자를 최소화하기 위해서는 저저항 배선 금속과 저유전상수 (low-k)의 층간 절연막 (IMD, intermetal dielectric) 물질이 필요하다. 최근 PECVD (plasma enhanced chemical vapor deposition)를 이용하여 증착시킨 유기살리케이트 (OSG, organosilicate glass)는 가장 유망한 저유전상수 물질로 각광받고 있다. 본 연구에서는 제일원리 연구를 통하여 OSG의 전구체 중에 하나인 DEMS 문자를 모델링하고, 에너지적으로 가장 안정한 구조를 찾아서 각 원자 간의 결합에 따른 해리에너지 (dissociation energy)를 계산하고, DEMS가 H-terminated Si 표면과 반응하는 기구에 대해 고찰하였다. 최적화된 DEMS 분자의 구조를 찾았고 DEMS 분자가 결합이 깨져 조각 분자군으로 될 때의 에너지들을 계산하였다. 계산된 해리에너지로부터 DEMS 분자의 O 원자와 C분자의 결합이 깨져서 $C_2H_5$를 조각 분자군으로 생성할 확률이 총 8가지의 경우에서 가장 높다는 것을 알 수 있었다. 8 가지의 해리된 DEMS 조각 분자군들이 H-terminated Si 표면과 반응할 때의 반응에너지를 계산한 결과 표면의 Si 원자와 DEMS 분자에서 $C_2H_5$가 해리되어 생성된 조각 분자군의 O 원자가 결합을 하고 부산물로 $C_2H_6$를 생성하는 반응이 가장 선호된다는 것을 알 수 있었다. DEMS 분자로 증착시킨 OSG에 대하여 제일원리법을 이용하여 계산한 연구는 보고된 바 없기 때문에, DEMS 분자의 각 원자 간의 해리에너지와 Si 기판과의 반응에너지는 추후 연구개발의 중요한 기초 자료가 될 수 있다.

  • PDF

A Design of Class A Bipolar Current Conveyor(CCII) with Low Current-Input Impedance and Its Offset Compensated CCII (낮은 전류-입력 임퍼던스를 갖는 A급 바이폴라 전류 콘베이어(CCII)와 그것의 오프셋 보상된 CCII 설계)

  • Cha, Hyeong-U
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.10
    • /
    • pp.754-764
    • /
    • 2001
  • Class A bipolar second-generation current conveyor (CCII) with low current-input impedance and its offset-compensated CCII for high-accuracy current-mode signal processing are proposed. The CCIIs consist of a regulated current-cell for current input, a emitter follower for voltage input, and a cascode current mirror lot current output. In these architecture, the two input stages are coupled by current mirror to reduce the current input impedance. Experiments show that the CCII has impedance of 8.4 Ω and offset voltage of 40 mV at current input terminal. To reduce this offset, the offset-compensated CCII adopts diode-connected npn and pnp transistor in the proposed CCII. Experiments show that the offset-compensated CCII has current input impedance of 2.1 Ω and offset voltage of 0.05 mV. The 3-dB cutoff frequency of the CCIIs when used as a voltage follower extends beyond 30 MHz. The power dissipation is 7.0 mW

  • PDF

Improvement of Linearity in Delay Cell Loads for Differential Ring Oscillator (지연 셀의 부하 저항 선형성을 개선한 차동 링 발진기)

  • 민병훈;정항근
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.8-15
    • /
    • 2003
  • In this paper, the issue of the differential ring oscillator in designing low phase noise is linearity improvement of delay cell's load resistor. A novel differential delay cell that improves on the Maneatis load is proposed. The linearity improvement of load resistor results in lower phase noise in ring oscillator. For comparison of the phase noise characteristics, Ali Hajimiri's phase noise model is used. In order to have a low ISF(impulse sensitivity function), it is important to have a symmetry between rise time and fall time of oscillation waveform. The ISF value of ing oscillator based on the proposed delay cell is lower than that of the existing ring oscillators. Due to this result, the phase noise is improved by 2~3dBc/Hz for the same power dissipation and oscillation frequency.

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage (모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2024
  • With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

Four-Channel Differential CMOS Optical Transimpedance Amplifier Arrays for Panoramic Scan LADAR Systems (파노라믹 스캔 라이다 시스템용 4-채널 차동 CMOS 광트랜스 임피던스 증폭기 어레이)

  • Kim, Sang Gyun;Jung, Seung Hwan;Kim, Seung Hoon;Ying, Xiao;Choi, Hanbyul;Hong, Chaerin;Lee, Kyungmin;Eo, Yun Seong;Park, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, a couple of 4-channel differential transimpedance amplifier arrays are realized in a standard 0.18um CMOS technology for the applications of linear LADAR(laser detection and ranging) systems. Each array targets 1.25-Gb/s operations, where the current-mode chip consists of current-mirror input stage, a single-to-differential amplifier, and an output buffer. The input stage exploits the local feedback current-mirror configuration for low input resistance and low noise characteristics. Measurements demonstrate that each channel achieves $69-dB{\Omega}$ transimpedance gain, 2.2-GHz bandwidth, 21.5-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -20.5-dBm), and the 4-channel total power dissipation of 147.6-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations. Meanwhile, the voltage-mode chip consists of inverter input stage for low noise characteristics, a single-to-differential amplifier, and an output buffer. Test chips reveal that each channel achieves $73-dB{\Omega}$ transimpedance gain, 1.1-GHz bandwidth, 13.2-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -22.8-dBm), and the 4-channel total power dissipation of 138.4-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations.

Design of QDI Model Based Encoder/Decoder Circuits for Low Delay-Power Product Data Transfers in GALS Systems (GALS 시스템에서의 저비용 데이터 전송을 위한 QDI모델 기반 인코더/디코더 회로 설계)

  • Oh Myeong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.27-36
    • /
    • 2006
  • Conventional delay-insensitive (DI) data encodings usually require 2N+1 wires for transferring N-bit. To reduce complexity and power dissipation of wires in designing a large scaled chip, an encoder and a decoder circuits, where N-bit data transfer can be peformed with only N+l wires, are proposed. These circuits are based on a quasi delay-insensitive (QDI) model and designed by using current-mode multiple valued logic (CMMVL). The effectiveness of the proposed data transfer mechanism is validated by comparisons with conventional data transfer mechanisms using dual-rail and 1-of-4 encodings through simulation at the 0.25 um CMOS technology. In general, simulation results with wire lengths of 4 mm or larger show that the CMMVL scheme significantly reduces delay-power product ($D{\ast}P$) values of the dual-rail encoding with data rate of 5 MHz or more and the 1-of-4 encoding with data rate of 18 MHz or more. In addition, simulation results using the buffer-inserted dual-rail and 1-of-4 encodings for high performance with the wire length of 10 mm and 32-bit data demonstrate that the proposed CMMVL scheme reduces the D*P values of the dual-rail encoding with data rate of 4 MHz or more and 1-of-4 encoding with data rate of 25 MHz or more by up to $57.7\%\;and\;17.9\%,$ respectively.