• Title/Summary/Keyword: low-carbon steels

Search Result 187, Processing Time 0.024 seconds

Modeling of Cementite Precipitation Kinetics on Solute Carbon Content in Extra and Ultra Low Carbon Steels (극저탄소강의 고용 탄소 함량에 미치는 시멘타이트 석출 속도 모델링)

  • Choi, Jong Min;Park, Bong June;Kim, Sung Il;Lee, Kyung Sub;Lee, Kyung Jong
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.187-193
    • /
    • 2010
  • The solute carbon content in ferrite is one of the important factors to obtain good formability in low carbon steels. Although most of the carbons are consumed by the formation of grain boundary cementite during coiling after hot-rolling, the carbon content after coiling is normally observed much more than that of equilibrium. In this study, a classical nucleation and growth model is used to simulate the precipitation kinetics of the grain boundary cementite from coiling temperature (CT) to room temperature (RT). The predicted precipitation behaviors depending on the initial carbon content and the cooling rate are compared with the reported. As a result, the lateral growth of thickening of cementite is a major factor for the sluggish reaction of grain boundary cementite. The reduction of solute carbon content after coiling is divided into three regions: a) increase due to no cementite precipitation, b) decrease due to the fast length-wise growth of cementite, c) increase due to the slow thickness-wise growth of cementite.

Effect of Cu on Hot Ductility Behavior of Low Carbon Steel (저탄소강의 열간 연성 거동에 미치는 Cu의 영향)

  • Son, Kwang Suk;Park, Tae Eun;Park, Byung-Ho;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • Cu as a tramp element has been reported to encourage transverse cracking upon straightening operation during continuous casting or mini-mill processing. Therefore, the hot workability of steels containing Cu should be investigated. The purpose of the present study was to examine the effect of Cu contents on the hot ductility of low carbon steels by using hot compression test. Hot compression test was carried out using a Gleeble. The specimens were heated to $1300^{\circ}C$ for solution treatment and then held for 300s before cooling at a rate of $1^{\circ}C/s$ to test temperatures in the range of $650{\sim}1150^{\circ}C$ ($50^{\circ}C$ intervals) with strain rate of $5{\times}10^{-3}/s$. In Cu containing steels, the hot ductility was decreased with increasing Cu content at high temperature region which is to be attributed to copper enriched phase formed at scale/steel interface, and low hot ductility with increasing Cu content at low temperature region is attributable to the strengthening of matrix by the formation of ${\varepsilon}-Cu$. The width of ductility trough region was decreased with increasing Cu content.

Effect of Fine Copper Sulfides on the High Cycle Fatigue Properties of Bake Hardening Steels for Automotive (자동차용 소부경화형(BH) 강의 고주기 피로 특성에 미치는 미세 황화물의 영향)

  • Kang, Seonggeu;Kim, Jinyong;Choi, Ildong;Lee, Sungbok;Hong, Moonhi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Bake hardening steels have to resist strain aging to prevent the yield strength increment and stretcher strain during press process and to enhance the bake hardenability during baking process after painting. The bake hardening steels need to control the solute carbon and the solute nitrogen to improve the bake hardenability. Ti and/or Nb alloying for nitride and carbide precipitation and low carbon content below 0.003% are used to solve strain aging and formability problem for automotive materials. However, in the present study, the effect of micro-precipitation of copper sulfide on the bake hardenability and fatigue properties of extremely low carbon steel has been investigated. The bake hardenability of Cu-alloyed bake hardening (Cu-BH) steel was slightly higher (5 MPa) than that of Nb-alloyed bake hardening (Nb-BH) steel, but the fatigue limit of Cu-BH steel was far higher (45 MPa) than that of Nb-BH steel. All samples showed the ductile fracture behavior and some samples revealed distinct fatigue stages, such as crack initiation, stable crack growth and unstable crack growth.

Effect of Micro-Alloying Elements and Transformation Temperature on the Correlation of Microstructure and Tensile Properties of Low-Carbon Steels with Ferrite-Pearlite Microstructure (페라이트-펄라이트 조직 저탄소강의 미세조직과 인장 특성의 상관관계에 미치는 미량합금원소와 변태 온도의 영향)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.184-191
    • /
    • 2017
  • This present study deals with the effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure. Six kinds of low-carbon steel specimens were fabricated by adding micro-alloying elements of Nb, Ti and V, and by varying isothermal transformation temperature. Ferrite grain size of the specimens containing mirco-alloying elements was smaller than that of the Base specimens because of pinning effect by the precipitates of carbonitrides at austenite grain boundaries. The pearlite interlamellar spacing and cementite thickness decreased with decreasing transformation temperature, while the pearlite volume fraction was hardly affected by micro-alloying elements and transformation temperature. The room-temperature tensile test results showed that the yield strength increased mostly with decreasing ferrite grain size and elongation was slightly improved as the ferrite grain size and pearlite interlamellar spacing decreased. All the specimens exhibited a discontinuous yielding behavior and the yield point elongation of the Nb4 and TiNbV specimens containing micro-alloying elements was larger than that of the Base specimens, presumably due to repetitive pinning and release of dislocation by the fine precipitates of carbonitrides.

Effect of Carbon Potential on the Carbide Formation and Pitting Fatigue Strength of Supercarburized Steel (고농도 침탄강의 탄화물 형성과 피팅 피로강도에 미치는 탄소 포텐셜의 영향)

  • So, Sangjin;Shin, Jungho;Lim, Jae-Won;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.113-123
    • /
    • 2016
  • In the present work, we investigated the effects of the carbon potential on the formation of carbide at the carburized surface and anti-pitting fatigue strength in the supercarburized steels. Two low carbon steels with different Cr concentrations were adopted and the repeated supercarburizing treatment carried out with the different carbon potential conditions. The microstructure and carbides at the supercarburized surface were observed by using optical microscope and scanning electron microscope. The microhardness test was performed and the hardness distribution and the effective case depth at the supercarburized surface were discussed. The roller pitting fatigue test was carried out and the fatigue strength was evaluated with different the carbon potential conditions. The microstructure of the fatigue specimen surface was observed by means of scanning electron microscope and scanning transmission electron microscope. Depending on the chemical composition of the steels and the carbon potential condition, the resistance of temper softening and pitting failure was influenced due to the carbide distribution and the formation of coarse network carbide. Thus, it was confirmed that the control of the carbide formation is a key factor to improve the anti-pitting fatigue strength in the supercarburized steels.

Study on the Effect of Induction Heating with Alloying Elements for the Pre-Heat Treated Steel of 100kgf/$mm^2$ Tensile Strength (100Kgf/$mm^2$급 선조질강의 합금원소에 따른 유도가열효과에 관한 연구)

  • Park, J.T.;Ahn, S.T.;Kwon, D.H.;Seo, J.H.;Kang, N.H.;Youn, D.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.40-43
    • /
    • 2009
  • This study is for investigating the effect of induction heating with various alloy elements to manufacture the pre-heat treated steels of 100kgf/$mm^2$ for cold heading. For four kinds of steels, the condition of induction heating (especially, induction tempering) were observed, and their microstructure and tensile and compressive properties were investigated. The middle carbon steel and the low carbon Cr-Mo steel are needed the higher Grange-Baughman tempering parameter than that of the low carbon Cr steel to obtain 100kgf/$mm^2$ tensile strength. For accomplishing the pre-heat treated steel of 100kgf/$mm^2$ tensile strength having advanced cold heading. It is needed that the pre-heat treated steel is manufactured by induction quenching and tempering with the low carbon alloy steel to have the high ratio of ferrite and the fine globular cementite simultaneously.

  • PDF

Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

  • Trung, Trinh Van;Kim, Min Jung;Park, Soon Yong;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as $Al_5Fe_2$ and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

Fabrication of Ultrafine Grained Structure Materials by Equal Channel Angular Pressing (ECAP 강소성 가공에 의한 구조재료 초미세립화)

  • Kim W. G.;Ahn Y. J.;Shin D. H.;Park K. T.;Ko Y. G.;Lee J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.126-129
    • /
    • 2005
  • Microstructures and tensile properties of low carbon steels, 5083 Al alloy and Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) were examined in order to understand their deformation response associated with a formation of an ultrafine grained (UFG) structure. Room temperature tensile properties of UFG low carbon ferrite/pearlite steels and UFG ferrite/martensite dual phase steel were compared for exploring a feasibility enhancing the strain hardening capability of UFG materials. In addition, low temperature and high strain rate superplasticity of the two grades of the UFG 5083 Al alloy, and Ti-6Al-4V alloy were presented. From the analysis of a series of experiments, it was found that UFG materials exhibited the enhanced mechanical properties compared to coarse grained counterparts.

  • PDF

Behavior of Initial Formation of Iron Nitride on Carbon Steel at Low Pressure Gas Nitriding (저압가스질화에서 탄소강의 초기 화합물층 형성 거동)

  • Kim, Yoon-Kee;Kim, Sang-Gweon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • Growth behaviors of iron-nitride on S45C steels at low pressure gas nitriding were examined. Surfaces of the steels covered with fine and porous oxide during the pre-oxidation using $N_2O$ gas. Well faceted particles connected with them were observed after 1 min nitriding. They grew steadily and filled inter-pores during additional nitriding process. From the X-ray diffraction analysis, ${\gamma}'$-iron nitride was dominantly formed at the initial stage but the amount of ${\varepsilon}$-iron nitride was rapidly increased as nitriding treatment time. The porous layer was formed on the particles and thickened up to half of nitride layer after 60 min nitriding. The observed growth behaviors were discussed in internal stress related with volume expansion involved in transforming from iron to iron-nitrides.