DOI QR코드

DOI QR Code

Modeling of Cementite Precipitation Kinetics on Solute Carbon Content in Extra and Ultra Low Carbon Steels

극저탄소강의 고용 탄소 함량에 미치는 시멘타이트 석출 속도 모델링

  • Choi, Jong Min (Division of Materials Science & Engineering, Hanyang University) ;
  • Park, Bong June (Division of Materials Science & Engineering, Hanyang University) ;
  • Kim, Sung Il (Automotive Steel Products Research Group, Technical Research Laboratory, POSCO) ;
  • Lee, Kyung Sub (Division of Materials Science & Engineering, Hanyang University) ;
  • Lee, Kyung Jong (Division of Materials Science & Engineering, Hanyang University)
  • 최종민 (한양대학교 신소재공학부) ;
  • 박봉준 (한양대학교 신소재공학부) ;
  • 김성일 (POSCO 기술연구소 자동차소재연구그룹) ;
  • 이경섭 (한양대학교 신소재공학부) ;
  • 이경종 (한양대학교 신소재공학부)
  • Received : 2009.09.07
  • Published : 2010.03.20

Abstract

The solute carbon content in ferrite is one of the important factors to obtain good formability in low carbon steels. Although most of the carbons are consumed by the formation of grain boundary cementite during coiling after hot-rolling, the carbon content after coiling is normally observed much more than that of equilibrium. In this study, a classical nucleation and growth model is used to simulate the precipitation kinetics of the grain boundary cementite from coiling temperature (CT) to room temperature (RT). The predicted precipitation behaviors depending on the initial carbon content and the cooling rate are compared with the reported. As a result, the lateral growth of thickening of cementite is a major factor for the sluggish reaction of grain boundary cementite. The reduction of solute carbon content after coiling is divided into three regions: a) increase due to no cementite precipitation, b) decrease due to the fast length-wise growth of cementite, c) increase due to the slow thickness-wise growth of cementite.

Keywords

Acknowledgement

Supported by : POSCO

References

  1. W. B. Hutchinson, K. I. Nilsson, and J. Hirsch, Metallurgy of vacuum degassed products (ed. R. Pradhan), p.109-126, TMS, Warrendale, PA (1990)
  2. L. Meyer, W. Bleck, and W. Muschenborn, Proc. Int. Forum on 'Physical metallurgy of IF steels', p.203-222, ISIJ, Tokyo, Japan (1990)
  3. L. J. Baker, S. R. Daniel, and J. D. Parker, Mater. Sci. Tech. 18, 355 (2002) https://doi.org/10.1179/026708302225002452
  4. A. Okamoto, M. Takahashi, and T. Hino, Trans. ISIJ 21, 802 (1981) https://doi.org/10.2355/isijinternational1966.21.802
  5. T. Obara, K. Sakata, M. Nishida, and T. Irie, Kawasaki Steel Technical Report 12, 25 (1985)
  6. S. Carabajar, J. Merlin, V. Massardier, and S. Chabanet, Mater. Sci. Eng. A281, 132 (2000)
  7. G. Spanos and M. V. Kral, Int. Mater. Rev. 54, 19 (2009) https://doi.org/10.1179/174328009X392949
  8. B. Sundman, B. Jansson, and J. O. Andersson, Calphad 9, 153 (1985) https://doi.org/10.1016/0364-5916(85)90021-5
  9. H. I. Aaronson and J. K. Lee, Lectures on the Theory of Phase Transformations, 2nd ed., p.165-227, TMS, Warrendale, PA (1999)
  10. G. J. Jones and R. K. Trivedi, J. Appl. Phys. 42, 4299 (1971) https://doi.org/10.1063/1.1659770
  11. C. Atkinson, Proc. R. Soc. Lond. A 378, 351 (1981) https://doi.org/10.1098/rspa.1981.0156
  12. A. E. Lord and D. N. Beshers, Acta Metall. 14, 1659 (1966) https://doi.org/10.1016/0001-6160(66)90018-6
  13. M. Gomez, S. F. Medina, and G. Caruana, ISIJ Int. 43, 1228 (2003) https://doi.org/10.2355/isijinternational.43.1228
  14. J. Chipman, Metall. Trans. 3, 55 (1972) https://doi.org/10.1007/BF02680585
  15. H.P. Stuwe, Arch. Fur Eisenhuttenwes. 46, 389 (1975)
  16. H. Katoh, H. Takechi, N. Takahashi, and M. Abe, Technology of Continuously Annealed Cold Rolled Sheet Steel (ed. R. Pradhan), p.37-58, AIME, New York (1985)
  17. J. Philibert, A. Vignes, Y. Brechet, and P. Combrade, Metallurgie du Minerai au Materiau, p.589-590, Masson, Paris (1998)
  18. J. Merlin, P. Merle, S. Garnier, M. Bouzekri, and M. Soler, Metall. Mater. Trans. 35A, 1655 (2004)
  19. S. H. Han, Y. S. Ahn, K. G. Chin, and I. B. Kim, J. Kor. Inst. Met. & Mater. 46, 713 (2008)