• Title/Summary/Keyword: low velocity

Search Result 2,854, Processing Time 0.03 seconds

A Numerical Study for Optimum Configuration of Pulverized Coal Nozzle to Prevent Uneven Distribution of Particle (분사된 미분탄의 편중분포 방지를 위한 내부장치 최적화에 관한 수치 해석적 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Park, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.270-279
    • /
    • 2000
  • Recently, according to increase in the requirement of electric power, a thermoelectric power plant equipped with pulverized coal combustion system is highly valued, because coal has abundant deposits and a low price compared with others. For efficient use of coal fuel, most of plant makers are studying to improve combustion performance and flame stability, and reduce pollutants emission. One of these studies is how to control the profile of particle injection and velocity dependant on coal nozzle configuration. Basically, nozzle which has mixed flow of gas and particle is required to have the balanced coal concentration at exit, but it is very difficult to obtain that by itself without help of other device. In this study, coal distribution and pressure drop in gas-solid flow are calculated by numerical method in nozzle with various shapes of venturi diffuser as a means to get even coal particle distribution. The tentative correlations of pressure drop and exit coal distribution are deduced as function of the height, length and reducing angle of venturi from the calculated results. When coal hurner nozzle is designed, these equations are very useful to optimize the shape of venturi which minimize uneven particle distribution and pressure drop within coal nozzle.

Interferometric Measurements of the Thickness Distribution of the Liquid Sheet Formed by Two Impinging Jets (충돌 제트에 의해 형성되는 액막의 두께 특성에 관한 연구)

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.214-223
    • /
    • 2000
  • In this research, a study on the characteristics of the liquid sheet formed by two impinging jets is presented. Using the interference phenomena of light, the thickness of the liquid sheet, which seems to heavily affect the size of the droplets, is measured and compared with existing theoretical modelings. Thinner liquid sheet is produced with larger impinging angle, smaller orifice diameter, and higher azimuthal angle but the jet velocity doesn't affect the thickness. More viscous liquid produces thicker liquid sheet. The theoretical modelings predict the same trend as the experiments but the thickness values are overestimated at low azimuthal angles. This difference is gradually decreased as the azimuthal angle is increased: The breakup mechanism of the droplets from the liquid sheet is visualized by a high speed camera. The crest around the edge of the liquid sheet is protruded with the accumulation of liquid at the end of protuberance, which contracts into a spherical shape and then becomes detached when the stem breaks down, producing large droplets with a few small size of satellites.

Designed and Implement of the Discrete Time Kalman Filter for Speed Estimation of the Sensorless Hub Wheel Motor (속도센서가 없는 허브-휠 전동기의 속도추정을 위한 이산시간 칼만필터의 설계 및 구현)

  • Jeon, Yong-Ho;Yee, Gi-Seo;Cho, Whang
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2008
  • Since hub wheel BLDC Motor consisted of wheel and BLDCM (Brushless DC Motor) without gear reducer has high efficiency and low operation noise, it can be utilized to a driving wheel at some light rail systems. However, installing sensors for speedometer on a Hub-Wheel motor is not easy, so it requires a different speed control mechanism method for speed measurement. This paper introduces a speed control method based on simple mathematical model which uses discrete Kalman Filter to estimate and control the speed of the motor.

Bench-scale Experiment on Catalytic Decomposition of 1,2 Dichlorobenzene by Vanadia-Titania Catalyst

  • Jeong, Ju-Young;Chin, Sung-Min;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.709-714
    • /
    • 2009
  • Catalytic activities of $V_2O_5/TiO_2$ catalyst were investigated under reaction conditions such as reaction temperature, catalyst size, inlet concentration and space velocity. A 1,2-dichlorobenzene(1,2-DCB) concentrations were measured in front and after of the heated $V_2O_5/TiO_2$ catalyst bed, and conversion efficiency of 1,2-DCB was determined from it's concentration difference. The conversion of 1,2-DCB using a pellet type catalyst in the bench-scale reactor was lower than that with the powder type used in the micro flow-scale reactor. However, when the pellet size was halved, the conversion was similar to that with the powder type catalyst. The highest conversion was shown with an inlet concentration of 100 ppmv, but when the concentration was higher or lower than 100 ppmv, the conversion was found to decrease. Complete conversion was obtained when the GHSV was maintained at below 10,000 $h^{-1}$, even at the relatively low temperature of $250^{\circ}C$. Water vapor inhibited the conversion of 1,2-DCB, which was suspected to be due to the competitive adsorption between the reactant and water for active sites.

Sensorless Vector Control of Spindle Induction Motors Using Rotor Flux Observer with a Variable Bandwidth (가변게인 회전자 자속관측기에 근거한 스핀들 유도전동기의 센서리스 속도제어)

  • Yu, Jae-Sung;Sin, Soo-Cheol;Lee, Won-Cheol;Park, Sang-Hoon;Won, Chung-Yuen;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.417-425
    • /
    • 2006
  • This paper presents a new speed sensorless vector control scheme of Spindle Induction Motors(SIM) which can be successfully applied to at any speed including even zero speed. The proposed sensorless vector control of SIM uses rotor flux estimator with a variable bandwidth. This approach is based on the Closed-Loop Rotor Flux Observer(CLRFO) which includes a variable bandwidth of the PI controller. For low speed operation, the bandwidth of CLRFO has a variable bandwidth structure according to the estimated rotor velocity. The experimental results show the satisfactory operation of the proposed sensorless algorithm.

Fracture Toughness and AE Behavior of Impact-Damaged CFRP (탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성)

  • Lee, S.G.;Nam, K.W.;Oh, S.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.81-88
    • /
    • 1997
  • Impact behavior of carbon fiber reinforced plastics (CFRP) laminates were evaluated with tension test and compact tension test. A steel ball launched by an air gun collides against CFRP laminates to generate impact damage of relatively low energy. The static tensile and fracture toughness tests were performed to evaluate the residual strength and the AE behavior of impact-damaged laminates. As a results, it was found that the static strength, the fracture toughness and the AE-event count were decreased with increasing of impact velocity and delamination area, and to have a different strength ratio and fracture toughness ratio for each stacking method. And also, it was confirmed that strength and fracture toughness of impact-damaged CFRP laminates could be evaluated and analyzed quantitatively by AE techniques.

  • PDF

A B-Spline Higher Order Panel Method for Analysis of Three Dimensional Potential Flow (B-스플라인 고차패널법에 의한 3차원 포텐셜 유동 해석)

  • Gun-Do. Kim;Ui-Sang Hwang;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.57-69
    • /
    • 2000
  • A higher order panel method based on representation for both the geometry and the velocity potential is developed for the analysis of steady flow around marine propellers. The self-influence functions due to the normal dipole and the source are desingularized through the quadratic transformation, and then the singular part is integrated analytically whereas the non-singular part is integrated using Gaussian quadrature. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution around lifting bodies with much fewer panels than existing low order panel methods.

  • PDF

Analysis of a Cryogenic Nitrogen-Ambient Air Heat Exchanger Including Frost Formation (착상을 고려한 극저온 질소-대기 열교환기의 해석)

  • 최권일;장호명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.825-834
    • /
    • 2000
  • A heat exchanger analysis is performed to investigate the heating characteristics of cryogenic nitrogen by ambient air for the purpose of cryogenic automotive propulsion. The heat exchanger is a concentric triple-passage for supercritical nitrogen, and the radial fins are attached on the outermost tube for the crossflow of ambient air. The temperature distribution is calculated for the nitrogen along the passage, including the real gas properties of nitrogen, the fluid convections and the conductions through the tube walls and the fins. Since the wall temperature of the outer (ambient side) tube is very low in most cases, a heavy frost can be formed on the surface, affecting the heat exchange performance. By the method of the similarity between the heat and the mass transfer of moist air, the frost growth and the time-dependent effectiveness of the heat exchanger are calculated for various operating conditions. It is concluded that the frost formation can augment the heating of nitrogen during the initial period because of the latent heat, then gradually degrades the heat exchange because of the increased thermal resistance. Practical design issues are discussed for the flow rate of nitrogen, the velocity and humidity of ambient air, and the sizes of the fin.

  • PDF

An Experimental Study on the Organic Rankine Cycle to Utilize Fluctuating Thermal Energy (가변열원에 대응하기 위한 ORC 사이클의 실험적인 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2015
  • The system design of the Organic Rankine Cycle(ORC) is greatly influenced by the thermal properties such as the temperature or the thermal capacity of heat source. Typically waste heat, solar energy, geothermal energy, and so on are used as the heat source for the ORC. However, thermal energy supplying from these kinds of heat sources cannot be provided constantly. Hence, an experimental study was conducted to utilize fluctuating thermal energy efficiently. For this experiment, an impulse turbine and supersonic nozzles were applied and the supersonic nozzle was used to increase the velocity at the nozzle exit. In addition, these nozzles were used to adjust the mass flowrate depending on the amount of the supplied thermal energy. The experiment was conducted with maximum three nozzles due to the capacity of thermal energy. The experimented results were compared with the predicted results. The experiment showed that the useful output power could be producted from low-grade thermal energy as well as fluctuating thermal energy.

A Study on the Organic Rankine Cycle Using R245fa (냉매(R245fa)를 이용한 유기랭킨 사이클에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun;Kim, Jinhan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.10-17
    • /
    • 2013
  • The organic Rankine cycle has been widely used to convert the renewable energy such as the solar energy, the geothermal energy, or the waste energy etc., to the electric power. Some previous studies focused to find what kind of refrigerant would be a best working fluid for the organic Rankine cycle. In this study, R245fa was chosen to the working fluid, and the cycle analysis was conducted for the output power of 30kW or less. In addition, properties (temperature, pressure, entropy, and enthalpy etc.) of the working fluid on the cycle were predicted when the turbine output power was controlled by adjusting the mass flowrate. The configuration of the turbine was a radial-type and the supersonic nozzles were applied as the stator. So, the turbine was operated in partial admission. The turbine efficiency and the optimum velocity ratio were considered in the cycle analysis for the low partial admission rate. The computed results show that the system efficiency is affected by the partial admission rate more than the temperature of the evaporator.