• Title/Summary/Keyword: low temperature scanning electron microscopy

Search Result 275, Processing Time 0.033 seconds

Low temperature synthesis of ZnO nanopowders by the polymerized complex method (착체중합법을 이용한 ZnO 나노분말의 저온합성)

  • 권용재;김경훈;임창성;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.229-233
    • /
    • 2002
  • Nano-sized ZnO particles were successfully synthesized at low temperatures by a polymerized complex method via an organochemical route. The polymeric precursors could be prepared using Zn nitrate hexahydrate and a mixed solution of citric acid and ethylene glycol as a chelating agent and a reaction medium. The polymeric precursors were calcined at temperatures from 300 to $700^{\circ}C$ for 3 h, and evaluated for degree of crystallization process, thermal decomposition, surface morphology and crystallite size. The thermal decomposition and crystallization process were analyzed by TG-DTA, FI-IR and XRD. The morphology and crystallite size of the calcined particles were evaluated by scanning electron microscopy (SEM), transmittance electron microscopy (TEM) and Scherrer's equation. Crystallization of the ZnO particles was detected at $300^{\circ}C$ and entirely completed above $400^{\circ}C$. Particles calcined between 400 and $700^{\circ}C$ showed a uniform size distribution with a round shape. The average particle sizes calcined at $400^{\circ}C$ for 3 hour were 30~40nm showing an ordinary tendency to increase with the temperatures.

An Experimental Study on Slagging/Fouling Characteristics for Various Coals in a 50kWth Pulverized Coal Combustion System (50kWth미분탄 연소 시스템에서 탄종별 슬래깅 및 파울링 특성 연구)

  • Kang, Kieseop;Lee, Jaewook;Chae, Taeyoung;Ryu, Changkook;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.107-109
    • /
    • 2012
  • In Korean coal power plants, rising coal prices have recently led to the rapid utilization of low lank coals such as sub-bituminous coal with low calorific values and low ash fusion temperatures. Using these coals beyond the design range has resulted in important issues including slagging and fouling, which cause negative effects in boiler performances and unstable operations. The purpose of this study is to observe slagging and fouling characteristics resulted from burning various ranks of pulverized coals. We have tested 3 different coals: FLAME(bituminous), KCH(sub-bituminous) and MOOLARBEN(bituminous)coals in the pilot system $50kW_{th}$ scale. A stainless steel tube with preheated air inside was installed in the downstream in order to simulate water wall. Collected ash on the probe and the slag inside the furnace near burner were analyzed by SEM (scanning electron microscopy) to verify the formation degree, surface features and color changes of the pasty ash particles. Induced coupled plasma and energy dispersive X-ray spectroscopy were also performed to figure out the chemical characteristics of collected samples. As a result, KCH was observed that more slag was developed inside the walls of the furnace and on the probe than the other two kinds of coals, as shown in the calculate slagging and fouling indices as well.

  • PDF

Surface Roughness Evolution of Gate Poly Silicon with Rapid Thermal Annealing (미세게이트용 폴리실리콘의 쾌속 열처리에 따른 표면조도 변화)

  • Song, Oh-Sung;Kim, Sang-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.261-264
    • /
    • 2005
  • The 90 nm gate pattern technology have been virtualized by employing the hard mask and the planarization of fate poly silicon. We fabricated 70nm poly-Si on $200 nm-SiO_2/p-Si(100)$ substrates using low pressure chemical vapor deposition (LPCVD) to investigate roughness evolution by varying rapid annealing temperatures. The samples were annealed at the temperatures of $700^{\circ}C\~1100^{\circ}C$ for 40 seconds with a rapid thermal annealer. The surface image and the surface roughness were measured by a field emission scanning electron microscopy (FESEM) and an atomic force microscopy (AFM), respectively. The poly silicon surface became more rough as temperature increased due to surface agglomeration. The optimum conditions of poly silicon planarization were achieved by annealed at $700^{\circ}C$ for 40 seconds.

  • PDF

Characteristics of phosphorescent OLED fabricated on IAZO anode grown by co-sputtering method (Co-sputtering 방법으로 제작한 IAZO 박막의 특성과 이를 이용하여 제작한 인광 OLED의 특성 분석)

  • Bae, Jung-Hyeok;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.60-61
    • /
    • 2007
  • IAZO (indium aluminium zinc oxide) anode films were co-sputtered on glass substrate using a dual target DC magnetron sputtering system. For preparation of IATO films, at constant DC power of IZO (indium zinc oxide) target of 100 W, the DC power of AZO (Aluminum zinc oxide) target was varied from 0 to 100 W. To analyze electrical and optical properties of IAZO anode, Hall measurement examination and UV/V is spectrometer were performed, respectively. In addition, structure of IAZO anode film was examined by X-ray diffraction (XRD) method. Surface smoothness was investigated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). From co-sputtered IAZO anode, good conductivity($2.32{\times}10^{-4}{\Omega}.cm$) and high transparency(approximately 80%) in the visible range were obtained even at low temperature deposition. Finally, J-V-L characteristics of phosphorescent OLED with IAZO anode were studied by Keithley 2400 and compared with phosphorescent OLED with conventional ITO anode.

  • PDF

Growth and Characterization of GaN on Sapphire and Porous SWCNT Using Single Molecular Precursor

  • Sekar, P.V. Chandra;Lim, Hyun-Chul;Kim, Chang-Gyoun;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.268-272
    • /
    • 2011
  • Due to their novel properties, GaN based semiconductors and their nanostructures are promising components in a wide range of nanoscale device applications. In this work, the gallium nitride is deposited on c-axis oriented sapphire and porous SWCNT substrates by molecular beam epitaxy using a novel single source precursor of $Me_2Ga(N_3)NH_2C(CH_3)_3$ with ammonia as an additional source of nitrogen. The advantage of using a single molecular precursor is possible deposition at low substrate temperature with good crystal quality. The deposition is carried out in a substrate temperature range of 600-750$^{\circ}C$. The microstructural, structural, and optical properties of the samples were analyzed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and photoluminescence. The results show that substrate oriented columnar-like morphology is obtained on the sapphire substrate while sword-like GaN nanorods are obtained on porous SWCNT substrates with rough facets. The crystallinity and surface morphology of the deposited GaN were influenced significantly by deposition temperature and the nature of the substrate used. The growth mechanism of GaN on sapphire as well as porous SWCNT substrates is discussed briefly.

A Study on SEM Observations of Low Temperature Degradation in Zirconia Dental Ceramics (저온열화에 따른 치과용 지르코니아의 전자현미경 관찰 연구)

  • Lee, Jung-Hwan;Joo, Kyu-Ji;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • Purpose: Thy yttria tetragonal zirconia polycrystalline(Y-TZP) is a good structural ceramic for dental restoration. But it have a problem that delamination of veneering ceramic from the Y-TZP core materials. The problem generally occur at the interface, thus this study was conducted to evaluate the interface of Y-TZP using scanning electron microscopy(SEM). Methods: To investigate this aspect, high-resolution SEM observations were made of polished and etched (HF content gel) cross-sections of the interface area. Dry and moist veneering porcelain powders were built up on the zirconia base. Results: The extent of this surface faceting is dependent upon the moisture content of the porcelain powder and the firing temperature. More moisture and higher final heating temperature accelerates the observed faceting of the Y-TZP grains at the interface to the veneering ceramic. Conclusion: These changes of the Y-TZP grains indicate that destabilization of the tetragonal phase of zirconia occurs at the interface during veneering with ceramic. It may result in a reduction of the stability of the zirconia and interface.

A Study On electrical Properties of $Ba_{0.5}/Sr_{0.5}/TiO_3$thin-film capacitor ($Ba_{0.5}/Sr_{0.5}/TiO_3$ 박막 커패시터의 전기적 특성에 관한 연구)

  • 이태일;송재헌;박인철;김홍배;최동환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.33-36
    • /
    • 1999
  • In this paper, $Ba_{0.5}$Sr$_{0.5}$TiO$_3$ thin-films were prepared on Pt/Ti/Si0$_2$/Si substrates by RF magnetron sp-uttering method. We investigated electric and dielectric properties of BST thin-films with various ann-ealing temperature using in-sute RTA. Deposition conditions of BST films were set substrate temperat-ure, 30$0^{\circ}C$ and working gas ratio, Ar:O$_2$=90:10. After BST films deposited, we fabricated a capacitor of MIM structure with Al top electrode for measurement. Post-annealing using RTA performed at 40$0^{\circ}C$, $600^{\circ}C$, 80$0^{\circ}C$ for 60 sec, respectively. Also we exacted crystallization and composition of BST thin-films by XRD analysis. In measurement result, this capacitors showed a dielectric constant of about 200 at 1MHz and leakage current density of 5$\times$10$^{-8}$ A/$\textrm{cm}^2$ at 1.5V Microstructure of BST thin-films exhibited effective quality in low-temperature annealed 71ms than high-temperature annealed 71ms.s.s.

  • PDF

Influence of RTA treatments on optical properties of ZnO nanorods synthesized by wet chemical method

  • Shan, Qi;Ko, Y.H.;Lee, H.K.;Yu, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.190-190
    • /
    • 2010
  • Zinc oxide is the most attractive material due to the large direct band gap (3.37 eV), excellent chemical and thermal stability, and large exciton binding energy (60 meV). Recently, ZnO nanorods were used as the high efficient antireflection coating layer of solar cells based on silicon (Si). In this reports, we studied the effects of rapid thermal annealing (RTA) treatment on optical properties of ZnO nanorods. For fabrication of ZnO nanorods, there are many methods such as hydrothermal method, sol-gel method, and metal organic chemical vapor deposition method. Among of them, we used the conventional wet chemical method which is simple and low temperature growth. In order to synthesize the ZnO nanorods, the ZnO films were deposited on Si substrate by RF magnetron sputtering at room temperature and the samples were dipped to aqua solution containing the zinc nitrate and hexamethylentetramines (HMT). The synthesis process was achieved in keeping with temperature of $90-95^{\circ}C$ and under constant stirring. The morphology of ZnO nanorods on glass and Si was characterized by scanning electron microscopy. For the analysis of antireflection performance, the reflectance and transmittance were measured by spectrophotometer. And for analyzing the effects of RTA treatment on ZnO nanorods, crystalline properties were investigated by X-ray diffraction measurements and optical properties was estimated by photoluminescence spectra.

  • PDF

Microwave Dielectric Properties of Low Temperature Fired (${Pb_{0.45}}{Ca_{0.55}}$) [(${Fe _{0.5}}{Nb_{0.5}}$)$_{0.9}{Sn_{0.1}}$]$O_3$Ceramics with Various Additives

  • Ha, Jong-Yoon;Park, Ji-Won;Yoon, Seok-Jin;Kim, Hyun-Jai;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.597-601
    • /
    • 2001
  • The effect of CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$additives on microwave dielectric properties of (P $b_{0.45}$C $a_{0.55}$) [(F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$(PCFNS) were investigated. The PCFNS ceramics were sintered at 11$65^{\circ}C$. To decrease the sintering temperature for using as a low-temperature co-firing ceramics (LTCC), CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$were added to the PCFNS. As the content of CuO increased, the sintered density and dielectric constant increased and the temperature coefficient of resonance frequency ($\tau$$_{f}$) shifted to the positive value. When the CuO-B $i_2$ $O_3$were added, dielectric properties were $\varepsilon$$_{r}$ of 83, Q. $f_{0}$ of 6085 GHz, and $\tau$$_{f}$ of 8ppm/$^{\circ}C$ at a sintering temperature of 100$0^{\circ}C$. The relationship between the microstructure and properties of ceramics was studied by X-ray diffraction and scanning electron microscopy.icroscopy.y.icroscopy.y.

  • PDF

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.