• 제목/요약/키워드: low pressure hydrogen

검색결과 338건 처리시간 0.03초

고함수 저등급 석탄의 초임계수 가스화 특성 (Supercritical Water Gasification of Low Rank Coal with High Moisture Content)

  • 윤상준;이재구;라호원;서명원
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.340-346
    • /
    • 2013
  • Study on clean and efficient utilization technology for low rank coal with high moisture content is actively ongoing due to limited reserves of petroleum and of high grade coal and serious climate change caused by fossil fuel usage. In the present study, supercritical water gasification of low rank coal was performed. With increasing reaction temperature, content of combustible gases such as $H_2$ and $CH_4$ in the syngas increased while the $CO_2$ content decreased. As the reaction pressure increased from 210 to 300 bar, the $CO_2$ content in the syngas increased while the hydrocarbon gas content decreased. The $H_2$ and $CH_4$ content in the syngas increased slightly with pressure. With the addition of Pd, Pt, and Ru catalysts, it was possible to improve the production of $H_2$. Moreover, the increase of active metal content in the catalyst increased the $H_2$ productivity. The Ru catalyst shows the best performance for increasing the $H_2$ content in the syngas, while decreasing the $CO_2$ content.

35MPa 수소가스 자동차용 복합소재 압력용기의 응력특성에 관한 강도안전성 연구 (Strength Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for 35MPa Hydrogen Gas Vehicle)

  • 김청균;김도현
    • 한국가스학회지
    • /
    • 제16권2호
    • /
    • pp.25-30
    • /
    • 2012
  • 본 논문에서는 알루미늄 라이너와 탄소섬유/에폭시 및 유리섬유/에폭시로 구성된 복합소재 압력용기에 대한 응력 안전성 연구결과를 제시하고 있다. 9.2L의 저장용량을 갖는 수소가스 자동차용 복합소재 압력용기에는 35MPa의 충전압력으로 수소가스를 압축한 경우이다. FEM 해석결과는 미국의 수소가스 압력용기에 대한 DOT-CFFC와 한국의 KS B ISO 인증기준에 기반하여 평가하였다. FEM 해석결과에서 알루미늄 라이너에 걸리는 응력 247MPa는 알루미늄 항복강도(272MPa)의 95%에 해당하는 안전기준에 비해 충분히 낮다는 결과이다. 그리고 알루미늄의 표면에 감은 탄소섬유 복합소재는 후프방향과 헤리컬방향에서 발생한 최대탄소섬유응력이 29.43%와 28.87% 수준으로 각각 나타났기 때문에 최소파열압력에서의 최대섬유응력 대비 30% 이하를 유지해야 한다는 안전기준에 부합하므로 안전하다. 또한, 탄소섬유 복합소재에 대한 응력비는 후프방향과 헤리컬방향에 대해 3.4와 3.46으로 각각 예측되었기 때문에 최소안전기준인 2.4보다 높아 안전한 것으로 나타났다.

DME를 연료로 하는 고압펌프의 성능 및 내열 특성 평가 (Performance and Thermal Endurance Tests of a High Pressure Pump Fueled with DME)

  • 백범기;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.89-95
    • /
    • 2020
  • The main scope of this paper is to see if the conventional pump can be properly used for a specific fuel, Di-methyl Ether (DME) despite of its low lubricity and high reactivity in the experimental conditions. A wobble plate type fuel pump was connected to the common rail to verify that the pump could deliver the fuel at the required pressure and resultantly DME could be used as fuel without modifying the original pump. At each required pressure (30 Mpa, 35 Mpa, 40 Mpa, 45 Mpa, and 50 Mpa), the pump met the pressure required by the common rail. In addition, pump performance experiments tended to follow the usual performance curve while the flow rate decreased as the pressure increased. The maximum flow rate of the pump was 470 kg/h at 30 Mpa and all measurements were taken with keeping DME temperature below 60℃.

기계적 합금화법으로 제조된 Mg-5 wt.% TiCr10Nbx (x=1,3,5) 복합재료의 수소화 특성 평가 (Hydrogenation Properties of Mg-5 wt.% TiCr10Nbx (x=1,3,5) Composites by Mechanical Alloying Process)

  • 김경일;홍태환
    • 대한금속재료학회지
    • /
    • 제49권3호
    • /
    • pp.264-269
    • /
    • 2011
  • Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develope kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). $Mg-TiCr_{10}Nb$ systems were evaluated for hydrogen kinetics by Sievert's type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

컴팩션된 Ti-Mn계 합금의 수소저장 및 방출 특성 (Hydrogen Storage and Release Properties for Compacted Ti-Mn Alloy)

  • 김종석;한원비;조현석;정문선;정성욱;조원철;강경수;김창희;배기광;김종원;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.9-16
    • /
    • 2017
  • Hydrogen forms metal hydrides with some metals and alloys leading to solid-state storage under moderate temperature and pressure that gives them the safety advantage over the gas and liquid storage methods. However, it has disadvantages of slow hydrogen adsorption-desorption time and low thermal conductivity. To improve characteristics of metal hydrides, it is important that activation and thermal conductivity of metal hydrides are improved. In this study, we have been investigated hydrogen storage properties of Hydralloy C among Ti-Mn alloys. Also, the characteristics of activation and thermal conductivity of Hydralloy C were enhanced to improve kinetics of hydrogen adsorption-desorption. As physical activation method, PHEM (planetary high energy mill) was performed in Ar or $H_2$ atmosphere. Hydralloy C was also activated by $TiCl_3$ catalyst. To improve thermal conductivity, various types of ENG (expanded natural graphite) were used. The prepared samples were compacted at pressure of 500 bar. As a result, the activation properties of $H_2$ PHEM treated Hydralloy C was better than the other activation methods. Also, the amounts of hydrogen storage showed up to 1.6 wt%. When flake type ENG was added to Hydralloy C, thermal conductivity and hydrogen storage properties were improved.

$Si_{2}H_{6}$$H_2$ Gas를 이용한 LPCVD 내에서의 선택적 Epitaxy 성장에 관한 연구 (A Study on Selective Epitaxial Growth using Disilane and Hydrogen gas in Low Pressure chemical vapor deposition)

  • 손용훈;김상훈;박성계;남승의;김형준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.471-475
    • /
    • 2000
  • P-type (100) Si wafer patterned with 1000$\AA$ SiO$_2$island was used as substrate and the Si films were deposited under low pressure using Si$_2$H$_{6}$-H$_2$gas mixture where the total gas flow rate and deposition pressure were 16.6sccm and 3.5mtorr, respectively. In this condition, we selectively obtained high-quality epitaxial Si layer of the 350~1050$\AA$ thickness. In order to extend the incubation period, we kept high pressure H$_2$ environment without Si$_2$H$_{6}$ gas for few minutes after first incubation period and then we conformed the existence of second incubation period.iod.

  • PDF

MH 수소저장 장치의 방출시 열거동 모사 수치 모델 개발 (Development of a Thermal Model for Discharge Behavior of MH Hydrogen Storage Vessels)

  • 오상근;조성욱;이경우
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.178-183
    • /
    • 2011
  • Metal hydride alloys are a promising type of material in hydrogen storage applications, allowing for low-pressure, high-density storage. However, while many studies are being performed on enhancing the hydrogen storage properties of such alloys, there has been little research on large-scale storage vessels which make use of the alloys. In particular, large-scale, high-density storage devices must make allowances for the inevitable generation or absorption of heat during use, which may negatively impact functioning properties of the alloys. In this study, we develop a numerical model of the discharge properties of a high-density MH hydrogen storage device. Discharge behavior for a pilot system is observed in terms of temperature and hydrogen flow rates. These results are then used to build a numerical model and verify its calculated predictions. The proposed model may be applied to scaled-up applications of the device, as well as for analyses to enhance future device designs.

수소충전소의 안전성 평가 연구 (A Study on Safety Assessment of Hydrogen Station)

  • 표돈영;김양화;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.499-504
    • /
    • 2019
  • Due to the rapid spread and low minimum ignition energy of hydrogen, rupture is highly likely to cause fire, explosion and major accidents. The self-ignition of high-pressure hydrogen is highly likely to ignite immediately when it leaks from an open space, resulting in jet fire. Results of the diffusion and leakage simulation show that jet effect occurs from the leakage source to a certain distance. And at the end of location, the vapor cloud explosion can be occurred due to the formation of hydrogen vapor clouds by built-up. In the result, it is important that depending on the time of ignition, a jet fire or a vapor cloud explosion may occur. Therefore, it is necessary to take into account jet effect by location of leakage source and establish a damage minimizing plan for the possible jet fire or vapor cloud explosion. And it is required to any kind of measurements such as an interlock system to prevent hydrogen leakage or minimize the amount of leakage when detecting leakage of gas.

수소혼입 천연가스 배관망의 누출 특성 분석 및 누출 시나리오 선정에 관한 연구 (A Study on the Analysis of the Leakage Characteristics and the Selection of Leakage Scenarios of the Blending Hydrogen into Natural Gas Pipeline)

  • 탁송수;임기섭
    • 한국안전학회지
    • /
    • 제39권1호
    • /
    • pp.27-32
    • /
    • 2024
  • This study analyzed cases of hydrogen (H2) and natural gas (CH4) leakage from a hydrogen-blended natural gas pipeline to determine a range of leakage characteristics, including leakage type, pipe material, pipe diameter, pressure, and damage size. Based on the results of this analysis, five hydrogen-blended natural gas leakage scenarios were selected. The national vision for a carbon-neutral society by 2050 is a very important strategic objective and promotes environmentally sustainable economic development in the age of the climate crisis. Accordingly, zero-carbon and low-carbon policies are being promoted in various fields, including energy production, consumption, and industrial processes. Hydrogen-blended natural gas is eco-friendly and is considered an important step towards carbon neutrality, with various countries including the United States and several European countries conducting empirical research to further investigate its potential. In Korea, a national research project commenced in April 2023 to verify and demonstrate the life cycle safety of blending hydrogen into the natural gas network. The results of this study will provide important data for the analysis of the damage impacts caused by the leakage of hydrogen-blended natural gas, such as the diffusion of gas clouds, fires, and gas explosions.

수소저장용 금속수소화물$(Mm\;(La_{0.6-0.8})\;Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$의 전열촉진 (Heat transfer enhancement of metal hydride $(Mm\;(La_{0.6-0.8})\;Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$ for hydrogen storage)

  • 배상철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.33-36
    • /
    • 2006
  • The effective thermal conductivities of $Mm\;(La_{0.6-0.8})\;Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2}$ (TL-492) with hydrogen and helium have been examined. Experiment results show that pressure has great influence on effective thermal conductivity in Low pressure range (below 0.5 MPa). And that influence decreases rapidly with increase of gas pressure. The reason is at low pressure, the mean free path of gas becomes greater than effective thickness of gas film which is important to the heat transfer mechanism in this research. And, carbon fibers have been used to try to enhance the poor thermal conductivity of TL-492. Three types of carbon fibers and three mass fractions have been examined and compared. Naturally, the highest effective thermal conductivity has been reached with carbon fiber which has highest thermal conductivity, and highest mass fraction. This method has acquired 4.33 times higher thermal conductivity than pure metal hydrides with quite low quantity of additives, only 0.99wt% of carbon fiber. This is a good result comparing to other method which can reach higher effect ive thermal conductivity but needs much higher mass fraction of additives too.

  • PDF