References
- Sandrock S. A. panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloys and Compounds 1999; 293-295: pp. 877-888. https://doi.org/10.1016/S0925-8388(99)00384-9
- Lin H. C., Lin K. M., Wu K. C., Hsiung H. H., Tsai H. K. Cyclic hydrogen absorption-desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys. Int J Hydrogen Energy 2007; 32: pp. 4966-4972. https://doi.org/10.1016/j.ijhydene.2007.07.057
- Cho S.-W., Shim G., Choi G.-S., Park C.-N., Yoo J.-H., Choi J. Hydrogen absorption-desorption properties of Ti0.32Cr0.43V0.25 alloy. J Alloys and Compounds 2007; 430: pp. 136-141.
- Yoo J.-H., Shim G., Cho S.-W., Park C.-N. Effects of desorption temperature and substitution of Fe for Cr on the hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy. Int J Hydrogen Energy 2007; 32: pp. 2977-2981. https://doi.org/10.1016/j.ijhydene.2007.01.012
- 박노언, 김형욱 "수소-연료전지 연구개발 투자현황 분석", 한국 수소 및 신에너지 학회논문집, Vol. 21, No. 2, 2010, pp. 143-148
- Zhang J., Fisher T., Ramachandran P. V., Gore J. P., Mudawar I. A review of heat transfer issues in hydrogen storage technologies. J Heat Transfer 2005; 127: pp. 1391-1399. https://doi.org/10.1115/1.2098875
- Muthukumar P., Maiya M. P., Murthy S. S. Experiments on a metal hydride-based hydrogen storage device. Int J Hydrogen Energy 2005; 30: pp. 1569-1581. https://doi.org/10.1016/j.ijhydene.2004.12.007
- Gambini M., Manno M., Vellini M. Numerical analysis and performance assessment of metal hydride-based hydrogen storage systems. Int J Hydrogen Energy 2008; 33: pp. 6178-6187 https://doi.org/10.1016/j.ijhydene.2008.08.006
- MacDonald B. D., Rowe A. M. Impacts of external heat transfer enhancements on metal hydride storage tanks. Int J Hydrogen Energy 2006; 31: pp. 1721-1731. https://doi.org/10.1016/j.ijhydene.2006.01.007
- MacDonald B. D., Rowe A. M. A thermally coupled metal hydride hydrogen storage and fuel cell system. J Power Sources 2006; 161: 346-355. https://doi.org/10.1016/j.jpowsour.2006.04.018
- Oi T., Maki K., Sakaki Y. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger. J Power Sources 2004; 125: pp. 52-61. https://doi.org/10.1016/S0378-7753(03)00822-X
- Nagel M., Komazaki Y., Suda S. Effective thermal conductivity of a metal hydride bed augmented with a copper wire matrix. J of Less-Common Metals 1986; 120: pp. 35-43. https://doi.org/10.1016/0022-5088(86)90625-9
- Kurt A., Ates H. Effect of porosity on thermal conductivity of powder metal materials. Materials and Design 2007; 28: pp. 230-233. https://doi.org/10.1016/j.matdes.2005.06.020
- Mohan G., Prakash Maiia M., Srinivasa Murthy S. Performance simulation of metal hydride hydrogen storage device with embedded filters and heat exchanger tubes. Int J Hydrogen Energy 2007; 32: pp. 4978-4987. https://doi.org/10.1016/j.ijhydene.2007.08.007