• Title/Summary/Keyword: low pressure hydrogen

Search Result 340, Processing Time 0.022 seconds

Charged Cluster Model as a New Paradigm of Crystal Growth

  • Nong-M. Hwang;In-D. Jeon;Kim, Doh-Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.87-125
    • /
    • 2000
  • A new paradigm of crystal growth was suggested in a charged cluster model, where charged clusters of nanometer size are suspended in the gas phase in most thin film processes and are a major flux for thin film growth. The existence of these hypothetical clusters was experimentally confirmed in the diamond and silicon CVD processes as well as in gold and tungsten evaporation. These results imply new insights as to the low pressure diamond synthesis without hydrogen, epitaxial growth, selective deposition and fabrication of quantum dots, nanometer-sized powders and nanowires or nanotubes. Based on this concept, we produced such quantum dot structures of carbon, silicon, gold and tungsten. Charged clusters land preferably on conducting substrates over on insulating substrates, resulting in selective deposition. if the behavior of selective deposition is properly controlled, charged clusters can make highly anisotropic growth, leading to nanowires or nanotubes.

  • PDF

Measurement of Aluminum Liner Internal Defect Deformation and Strain Using Shearography and FEM Verification (Shearography를 이용한 Aluminum Liner 내부 결함의 변형량과 변형율 측정 및 FEM 검증)

  • Choi, In-Young;Hong, Kyung-Min;Ko, Kwang-Su;Kang, Young-June
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.686-692
    • /
    • 2013
  • Today, environmental issues have become a matter of worldwide concern. In particular, automobile industries engage in considerable research and investment to develop high-efficiency and ecofriendly cars. Most ecofriendly cars use natural gas or hydrogen gas instead of fossil fuels. In this regard, low-weight and high-pressure vessels have gradually been developed to increase the driving distance of a car. However, most pressure vessels installed in cars develop many defects over time owing to shocks sustained when the car is being driven. Such defects can cause the explosion of the pressure vessel. Therefore it is important to prevent such explosions due to internal defects. The use of shearography for measuring the internal defects of objects afford many advantages. It is a non-contact and non-destructive method, and it is not limited by the object shape. In this study, the internal defect deformation and strain of an aluminum liner that is used in a CNG bus for the fuel storage tank is measured using shearography. It is important to measure the strain and deformation in order to detect defects and repair the pressure vessel. To verify the accuracy of the shearography measurement method, the measurement results of shearography, out-of-plane ESPI, and FEM are compared quantitatively.

Effects of Fuel Composition and Pressure on Autoignition Delay of Biomass Syngas (혼합비율 및 압력 변화가 바이오매스 합성가스의 점화지연 시간에 미치는 영향)

  • Shim, Tae Young;Kang, Ki Joong;Lu, Xingcai;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.945-952
    • /
    • 2015
  • The autoignition characteristics of biosyngas were investigated both numerically and experimentally. The effects of the temperature, gas composition, and pressure on the autoignition characteristics were evaluated. A shock tube was employed to measure the ignition delay times of the biosyngas. The numerical study on the ignition delay time was performed using the CHEMKIN-PRO software to validate the experimental results and predict the chemical species in the combustion process. The results revealed that the ignition delay time increased with an increase in the hydrogen fraction in the mixture. Under most temperature conditions, the ignition delay time decreased with a pressure increase. However, the ignition delay time increased with an increase in pressure under relatively low temperature conditions.

a-C:H Films Deposited in the Plasma of Surface Spark Discharge at Atmospheric Pressure. Part I: Experimental Investigation

  • Chun, Hui-Gon;K.V. Oskomov;N.S. Sochungov;Lee, Jing-Hyuk;You, Yong-Zoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.357-363
    • /
    • 2003
  • The aim of this work is the synthesis of a-C:H films from methane gas using surface spark discharge at the atmospheric pressure. Properties of these films have been investigated as functions of energy W delivered per a methane molecule in the discharge. The method enables the coatings to be deposited with high growth rates (up to $100 \mu\textrm{m}$/hour) onto large-area substrates. It is shown that the films consist of spherical granules with diameter of 20∼50 nm formed in the spark channel and then deposited onto the substrate. The best film characteristics such as minimum hydrogen-to-carbon atoms ratio H/C=0.69, maximum hardness $H_{v}$ =3 ㎬, the most dense packing of the granules and highest scratch resistance has been obtained under the condition of highest energy W of 40 eV. The deposited a-C:H coatings were found to be more soft and hydrogenated compared to the diamond-like hydrogenated (a-C:H) films which obtained by traditional plasmaenhanced chemical vapor deposition methods at low pressure (<10 Torr). Nevertheless, these coatings can be potentially used for scratch protection of soft plastic materials since they are of an order harder than plastics but still transparent (the absorption coefficient is about $10^4$$10^{5}$ $m^{-1}$ At the same time the proposed method for fast deposition of a-C:H films makes this process less expensive compared to the conventional techniques. This advantage can widen the application field of. these films substantially.y.

A Study on the Safety Management of High Pressure Underground Pipeline in Industrial estate (산업단지 고압매설배관 안전관리 고찰)

  • Choi, Hyun-Woong;Chung, Se-Kwang;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.30-38
    • /
    • 2017
  • Established in the 1960s, high pressure underground pipelines in Ulsan and Yeosu industrial estate are underground as toxic gas as well as combustible gas that is heavier than city gas and low combustion range. Especially, industrial pipelines occupy more than 20 years old pipes. In this way, the industrial estate pipeline was installed before the introduction of the supervision of construction, However, unlike the city gas pipeline, the pipeline is managed without any legal obligation. In this study, the safety management status of high pressure underground pipelines and urban gas underground pipelines in the industrial estate is analyzed and comparison of laws, extent of damage impact, using the pipe inspection model for pipe inspection of high pressure piping system with the existing piping system. it is intended to cuntribute to improving the safety of industrial estate are underground pipeline.

Fabrication of YSZ/GDC Bilayer Electrolyte Thin Film for Solid Oxide Fuel Cells

  • Yang, Seon-Ho;Choi, Hyung-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.189-192
    • /
    • 2014
  • Yttria-stablized zirconia (YSZ) is the most commonly used electrolyte material, but the reduction in working temperature leads to insufficient ionic conductivity. Ceria based electrolytes (GDC) are more attractive in terms of conductivity at low temperature, but these materials are well known to be reducible at very low oxygen partial pressure. The reduction of electrolyte resistivity is necessary to overcome cell performance losses. So, thin YSZ/GDC bilayer technology seems suitable for decreasing the electrolyte resistance at lower operating temperatures. Bilayer electrolytes composed of a galdolinium-doped $CeO_2$ ($Ce_{0.9}Gd_{0.1}O_{1.95}$, GDC) layer and yttria-stabilized $ZrO_2$ (YSZ) layer with various thicknesses were deposited by RF sputtering and E-beam evaporation. The bilayer electrolytes were deposited between porous Ni-GDC anode and LSM cathode for anode-supported single cells. Thin film structure and surface morphology were investigated by X-ray diffraction (XRD), using $CuK{\alpha}$-radiation in the range of 2ce morphol$^{\circ}C$. The XRD patterns exhibit a well-formed cubic fluorite structure, and sharp lines of XRD peaks can be observed, which indicate a single solid solution. The morphology and size of the prepared particles were investigated by field-emission scanning electron microscopy (FE-SEM). The performance of the cells was evaluated over $500{\sim}800^{\circ}C$, using humidified hydrogen as fuel, and air as oxidant.

Electrical and Optical Properties of Al-doped ZnO Thin Films (Al-doped ZnO 투명 전도성 박막(TCO)의 전기적 광학적 특성)

  • Hong, Youn-Jeong;Lee, Kyu-Mann;Kim, In-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.35-39
    • /
    • 2007
  • ITO(Indium Tin Oxide) is the most attractive TCO(Transparent Conducting Oxide) materials for LCD, PDP, OLEDs and solar cell, because of their high optical transparency and electrical conductivity. However due to the shortage of indium resource, hard processing at low temperature, and decrease of optical property during hydrogen plasma treatment, their applications to the display industries are limited. Thus, recently the Al-doped ZnO(AZO) has been studied to substitute ITO. In this study, we have investigated the effect of different substrate temperature(RT, $150^{\circ}C$, $225^{\circ}C$, $300^{\circ}C$) and working pressure(10 mTorr, 20 mTorr, 30 mTorr, 80 mTorr) on the characteristics of AZO(2 wt.% Al, 98 wt.% ZnO) films deposited by RF-magnetron sputtering. We have obtained AZO thin films deposited at low temperature and all the deposited AZO thin films are grown as colunmar. The average transmittance in the visible wavelength region is over 80% for all the films and transmittance improved with increasing substrate temperature. Electrical properties of the AZO films improved with increasing substrate temperature.

  • PDF

A Diamond-like Film Formation from (CH$_4$ + H$_2$) Gas Mixture with the LPCVD Apparatus (LPCVD 장치를 이용한 메탄과 수소 혼합기체로부터 다이아몬드 박막의 제조)

  • Kim Sang Kyun;Choy Jin-Ho;Choo Kwng Yul
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.396-403
    • /
    • 1990
  • We describe how to design and construct a LPCVD (Low Pressure Chemical Vapor Deposition) apparatus which can be applicable to the study of reaction mechanism in general CVD experiments. With this apparatus we have attempted to make diamond like carbon films on the p-type (111) Si wafer from (H$_2$ + CH$_4$) gas mixtures. Two different methods have been tried to get products. (1)The experiment was carried out in the reactor with two different inlet gas tubes. One coated with phosphoric acid was used for supplying microwave discharged hydrogen gas stream, and methane has been passed through the other tube without the microwave discharge. In this method we got only amorphous carbon cluster products. (2) The gas mixture (H$_2$ + CH$_4$) has been passed through the discharge tube with the Si wafer located in and/or near the microwave plasma. In this case diamond-like carbon products could be obtained.

  • PDF

A Study on the Reaction Characteristics of Carbon Dioxide Methanation Catalyst for Full-Scale Process Application (이산화탄소 메탄화 공정 적용을 위한 Ni/CeO2-X 촉매의 반응 특성 연구)

  • Lee, Ye Hwan;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.323-327
    • /
    • 2020
  • The reaction characteristics of Ni/CeO2-X which is highly efficient at a low temperature was investigated for an application to carbon dioxide methanation process. The CeO2-X support was obtained by the heat treatment of Ce(NO3)3 at 400 ℃ and the catalyst was prepared by impregnation process. The operating parameters of the experiment were the internal pressure of the reactor, the composition of oxygen, methane, and hydrogen sulfide in the inlet gas and the reaction temperature. When Ni/CeO2-X was used for the carbon dioxide methanation reaction, the CO2 conversion rate increased by more than 25% as the pressure increased from 1 to 3 bar. The increase was large at a low reaction temperature. When both oxygen and methane were in the inlet gas, the CO2 conversion rate of the catalyst decreased by up to 16 and 4%, respectively. As the concentration of oxygen and methane increased, the reduction rate of the CO2 conversion rate tended to increase. In addition, the hydrogen sulfide in the inlet gas reduced the CO2 conversion rate by up to 7% and caused catalyst deactivation. The results of this study will be useful as basic data for the carbon dioxide methanation process.

Low-Temperature Si and SiGe Epitaxial Growth by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (UHV-ECRCVD)

  • Hwang, Ki-Hyun;Joo, Sung-Jae;Park, Jin-Won;Euijoon Yoon;Hwang, Seok-Hee;Whang, Ki-Woong;Park, Young-June
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.422-448
    • /
    • 1996
  • Low-temperature epitaxial growth of Si and SiGe layers of Si is one of the important processes for the fabrication of the high-speed Si-based heterostructure devices such as heterojunction bipolar transistors. Low-temperature growth ensures the abrupt compositional and doping concentration profiles for future novel devices. Especially in SiGe epitaxy, low-temperature growth is a prerequisite for two-dimensional growth mode for the growth of thin, uniform layers. UHV-ECRCVD is a new growth technique for Si and SiGe epilayers and it is possible to grow epilayers at even lower temperatures than conventional CVD's. SiH and GeH and dopant gases are dissociated by an ECR plasma in an ultrahigh vacuum growth chamber. In situ hydrogen plasma cleaning of the Si native oxide before the epitaxial growth is successfully developed in UHV-ECRCVD. Structural quality of the epilayers are examined by reflection high energy electron diffraction, transmission electron microscopy, Nomarski microscope and atomic force microscope. Device-quality Si and SiGe epilayers are successfully grown at temperatures lower than 600℃ after proper optimization of process parameters such as temperature, total pressure, partial pressures of input gases, plasma power, and substrate dc bias. Dopant incorporation and activation for B in Si and SiGe are studied by secondary ion mass spectrometry and spreading resistance profilometry. Silicon p-n homojunction diodes are fabricated from in situ doped Si layers. I-V characteristics of the diodes shows that the ideality factor is 1.2, implying that the low-temperature silicon epilayers grown by UHV-ECRCVD is truly of device-quality.

  • PDF