DOI QR코드

DOI QR Code

Effects of Fuel Composition and Pressure on Autoignition Delay of Biomass Syngas

혼합비율 및 압력 변화가 바이오매스 합성가스의 점화지연 시간에 미치는 영향

  • Shim, Tae Young (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kang, Ki Joong (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lu, Xingcai (School of Mechanical and Power Engineering, Institute of Internal Combustion Engine, Shanghai Jiao Tong Univ.) ;
  • Choi, Gyung Min (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kim, Duck Jool (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2015.07.27
  • Accepted : 2015.09.29
  • Published : 2015.12.01

Abstract

The autoignition characteristics of biosyngas were investigated both numerically and experimentally. The effects of the temperature, gas composition, and pressure on the autoignition characteristics were evaluated. A shock tube was employed to measure the ignition delay times of the biosyngas. The numerical study on the ignition delay time was performed using the CHEMKIN-PRO software to validate the experimental results and predict the chemical species in the combustion process. The results revealed that the ignition delay time increased with an increase in the hydrogen fraction in the mixture. Under most temperature conditions, the ignition delay time decreased with a pressure increase. However, the ignition delay time increased with an increase in pressure under relatively low temperature conditions.

본 연구에서는 바이오매스 합성가스를 모사하여 합성가스의 주요성분에 따른 자착화 특성을 실험 및 수치적으로 고찰하였으며, 온도, 혼합물의 조성, 압력의 변화가 자착화 특성에 미치는 영향을 분석하였다. 충격파관(Shock Tube)을 이용하여 모사 합성가스의 점화지연 시간을 측정하였고, 수치해석은 실험결과 검증과 연소과정 중 중간화학종 분석을 위해 상용프로그램인 CHEMKIN-PRO를 사용하였다. 모든 온도 조건에서 혼합물 내의 수소의 몰 비율이 증가함에 따라 점화지연 시간이 감소하는 현상을 확인할 수 있었다. 1150K 이상의 온도 조건에서 압력이 증가함에 따라 점화지연 시간이 감소하는 현상을 확인 할 수 있었다. 하지만 1150K 이하의 온도 조건에서는 압력이 증가함에 따라 점화지연 시간이 증가하는 현상을 확인할 수 있었다.

Keywords

References

  1. Lu, X., Hna, D. and Huang, Z., 2011, Goldenberg, A. A. and Bezerghi, A., 1985, "Fuel Design and Management for the Control of Advanced Compression-Ignition Combustion Modes," Progress in Energy and Combustions Science, Vol. 37, pp.741-783. https://doi.org/10.1016/j.pecs.2011.03.003
  2. Yao, M., Zheng, Z. and Liu, H., 2009, "Progress and Recent Trends in Homogeneous Charge Compression Ignitio(HCCI) Engines," Progress in Energy and Combustion Science, Vol. 35, pp.398-437. https://doi.org/10.1016/j.pecs.2009.05.001
  3. Song, J., Kang, K., Yang, Z., Lu, X., Choi, G. and Kim, D., 2013, "The Investigation on the Ignition Delay of n-Heptane/n-Butanol Blend Fuel Using a Rapid Compression Machine at Low Temperature Combustion Regime," J. Korean Soc. Combust., Vol. 18, pp.32-41. https://doi.org/10.15231/jksc.2013.18.2.032
  4. Yang, Z., Chu, C., Wang, L. and Huang Y., 2015, "Effects of $H_2$ Addition on Combustion and Exhaust Emissions in a Diesel Engine," Fuel, Vol. 139, pp.190-197. https://doi.org/10.1016/j.fuel.2014.08.057
  5. Zhang, Y., Jiang, X., Wei, L., Zhang, J., Tang, C. and Huang, Z., 2012, "Experimental and Modeling Study on Auto-Ignition Characteristics of Methane/Hydrogen Blends Under Engine Relevant Pressure," International Journal of Hydrogen Energy, Vol. 37, pp.19168-19176 https://doi.org/10.1016/j.ijhydene.2012.09.056
  6. Guo, H. and Neill, W. S., 2013, "The Effect of Addition on Combustion and Emission Characteristics of an n-Heptane Fuelled HCCI Engine," International Journal of Hydrogen Energy, Vol. 38, pp.11429-11437.
  7. Yang, Z., Qian, T., Yang, X., Wang, Y., Wang, Y., Huang, Z. and Lu, X., 2013, "Autoignition of n-Butanol/n-Heptane Blend Fuels in a Rapid Compression Machine Under Low-to-Medium Temperature Ranges," Energy and Fuels, Vol. 27, pp.7800-7808. https://doi.org/10.1021/ef401774f
  8. Mckendry, P., 2002, "Energy Production from Biomass (Part 2): Conversion Technologies," Bioresource Technology, Vol. 83, pp.47-54. https://doi.org/10.1016/S0960-8524(01)00119-5
  9. Aggarwal, S. K., Awomolo, O. and Akber, K., 2011, "Ignition Characteristics of Heptane-Hydrogen and Heptane-Methane Fuel Blends at Elevated Pressures," International Journal of Hydrogen Energy, Vol. 36, pp.15392-15402. https://doi.org/10.1016/j.ijhydene.2011.08.065
  10. Keromnes, A., Metcalfe, W. K., Heufer, K. A., Donohoe, N., Das, A. K., Sung, C. J., Herzler, J., Naumann, C., Griebel, P., Mathieu, O., Krejci, M. C., Petersen, E. L., Pitz, W. J. and Curran, H. J., 2013, "An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures," Combustion and Flame, Vol. 160, pp.995-1011. https://doi.org/10.1016/j.combustflame.2013.01.001
  11. Geng, Z., Xu, L., Li, H., Wang, J., Huang, Z. and Lu, X., "Shock Tube Measurements and Modeling Study on the Ignition Delay Times of n-Butanol/Dimethyl Ether Mixtures," Energy and fuels, Vol. 28, pp.4206-4215.
  12. Anderson, J. D., 1990, "Modern Compressible Flow," McGraw-Hill, New York.
  13. Gauthier, B. M, Davidson, D. F. and Hanson, R. K., 2004, "Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures," Combustion and Flame, Vol. 139, pp.300-311. https://doi.org/10.1016/j.combustflame.2004.08.015
  14. Rickard M. J. A., Hall, J. M. and Petersen, E. L., 2005, "Effect of Silane Addition on Acetylene Ignition Behind Reflected Shock Waves," Proceedins of the Combustion Institute, Vol. 30, pp.1915-1923.
  15. Reaction Design. http://www.reactiondesign.com/products/chemkin/
  16. Wang, H., You, X., Joshi, A. V., Davis, S. G., Laskin, A., Egolfopoulos, F. and Law, C. K., 2007, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm.
  17. Hu, E., Li, X., Meng, X,. Chen, Y., Cheng, Y., Xie, Y., Huang, Z., 2015, "Laminar Flame Speeds and Ignition Delay Times of Methane-Air Mixtures at Elevated Temperatures and Pressures," Fuel, Vol. 158, pp.1-10. https://doi.org/10.1016/j.fuel.2015.05.010
  18. Burke, U., Somers, K. P., O'Toole, P., Zinner, C. M., Marquet, N., Bourque, G., Petersen, E. L., Metcalfe, W. K., Serinyel, Z. and Curran, H. J., 2015, "An Ignition Delay and Kinetic Modeling Study of Methane, Dimethylether, and Their Mixtures at High Pressures,"Combustion and Flame, Vol. 162, pp.315-330. https://doi.org/10.1016/j.combustflame.2014.08.014
  19. Zhang, Y., Huang, Z., Wei, L., Zhang, J. and Law, C. K., 2012, "Experimental and Modeling Study on Ignition Delays of Lean Mixtures of Methane, Hydrogen, Oxygen, and Argon at Elevated Pressures," Combustion and Flame, Vol. 159, pp.918-931 https://doi.org/10.1016/j.combustflame.2011.09.010
  20. Darcy, D., Nakamura, H., Tobin, C. J., Mehl, M., Metcalfe, W. K., Pitz, W. J., Westbrook, C. K. and Curran, H. J., 2014, "A High-Pressure Rapid Compression Machine Study of N-Propylvenzene Ignition," Combustion and Flame, Vol. 161, pp.65-74. https://doi.org/10.1016/j.combustflame.2013.08.001