• Title/Summary/Keyword: low power network

Search Result 1,244, Processing Time 0.027 seconds

Related-Key Differential Attacks on CHESS-64

  • Luo, Wei;Guo, Jiansheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3266-3285
    • /
    • 2014
  • With limited computing and storage resources, many network applications of encryption algorithms require low power devices and fast computing components. CHESS-64 is designed by employing simple key scheduling and Data-Dependent operations (DDO) as main cryptographic components. Hardware performance for Field Programmable Gate Arrays (FPGA) and for Application Specific Integrated Circuits (ASIC) proves that CHESS-64 is a very flexible and powerful new cipher. In this paper, the security of CHESS-64 block cipher under related-key differential cryptanalysis is studied. Based on the differential properties of DDOs, we construct two types of related-key differential characteristics with one-bit difference in the master key. To recover 74 bits key, two key recovery algorithms are proposed based on the two types of related-key differential characteristics, and the corresponding data complexity is about $2^{42.9}$ chosen-plaintexts, computing complexity is about $2^{42.9}$ CHESS-64 encryptions, storage complexity is about $2^{26.6}$ bits of storage resources. To break the cipher, an exhaustive attack is implemented to recover the rest 54 bits key. These works demonstrate an effective and general way to attack DDO-based ciphers.

Design and Implementation of UV Flame Detector Module Using Low Power Algorithm of ZigBee (ZigBee Protocol의 저 전력 알고리듬을 이용한 UV Flame Detector의 설계 및 구현)

  • Lee, Young-Jae;Chang, Choong-Won;Rhee, Sang-Yong;Jung, Min-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.429-436
    • /
    • 2008
  • Nowadays fires must be detected rapidly Abstract, and by connecting the detector's distribution, sender, transponder, receiver and others can be connected. Mechanical systems are implemented in today's buildings. However, this kind of constructing method has some disadvantages, that is, if fire happens somewhere, we cannot judge where the fires happen, and it is also difficult to judge what extent the fires reach. In order to overcome the disadvantages, in this paper, according to the tendency of combining the Ubiquitous and Intelligent Network, we propose a type of system by using the method of comparing the differences of the existed systems. The proposed system is designed to perceive the fires rapidly and confirm the fire place and fire scale correctly.

Design and Implementation of a Dual-Channel ZigBee Router (이중 채널 ZigBee 라우터의 설계 및 구현)

  • Kim, Brian
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.416-421
    • /
    • 2007
  • ZigBee is becoming a promising communication protocol for wireless sensor networks based on low-power consumption. In case of a ZigBee network requesting continuous transmission of sensed data, the required bandwidth can be overwhelm the maximum transmission rate of 150Kbps. However, the ZigBee router which delivers data from source node to destination node can transmit data at most in a half of maximum rate because the router can not send and receive the data simultaneously. In this paper, we propose and implement a dual-channel router which can send and receive data simultaneously. Also, we propose a centralized channel allocation algorithm to allocate different channels to each module. The experiment result by the proposed dual-channel router shows a maximum throughput of 150Kbps as large as twice of normal single-channel router.

Design and Implementation of Parallel MPEG Encoder with MPI on Cluster System (클러스터환경에서 MPI를 이용한 병렬 MPEG인코더의 설계 및 구현)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1744-1750
    • /
    • 2008
  • As the computing and network technique move rm and spread widly, the usage of multimedia application becomes in general while the usage of text based application becomes low. Especially the application which treats the streaming media such as video or movie, one of multimedia data, holds a majority in the usage of computing. MPEG, one of the typical compression standard of streaming media, provides very high compression ratio so that general users could be close to the streaming media with easy usage. However, the encoding of MPEG requires lots of computing power and time. In the paper, we design and implement a parallel MPEG encoder with MPI in cluster envrionment to reduce the encoding time of MPEG.

Design and Evaluation of a Quorum-Based Adaptive Dissemination Algorithm for Critical Data in IoTs (IoT에서 중요한 데이터를 위한 쿼럼 기반 적응적 전파 알고리즘의 설계 및 평가)

  • Bae, Ihn Han;Noh, Heung Tae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.913-922
    • /
    • 2019
  • The Internet of Things (IoT) envisions smart objects collecting and sharing data at a massive scale via the Internet. One challenging issue is how to disseminate data to relevant data consuming objects efficiently. In such a massive IoT network, Mission critical data dissemination imposes constraints on the message transfer delay between objects. Due to the low power and communication range of IoT objects, data is relayed over multi-hops before arriving at the destination. In this paper, we propose a quorum-based adaptive dissemination algorithm (QADA) for the critical data in the monitoring-based applications of massive IoTs. To design QADA, we first design a new stepped-triangular grid structures (sT-grid) that support data dissemination, then construct a triangular grid overlay in the fog layer on the lower IoT layer and propose the data dissemination algorithm of the publish/subscribe model that adaptively uses triangle grid (T-grid) and sT-grid quorums depending on the mission critical in the overlay constructed to disseminate the critical data, and evaluate its performance as an analytical model.

Design of Low Area Decimation Filters Using CIC Filters (CIC 필터를 이용한 저면적 데시메이션 필터 설계)

  • Kim, Sunhee;Oh, Jaeil;Hong, Dae-ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.71-76
    • /
    • 2021
  • Digital decimation filters are used in various digital signal processing systems using ADCs, including digital communication systems and sensor network systems. When the sampling rate of digital data is reduced, aliasing occurs. So, an anti-aliasing filter is necessary to suppress aliasing before down-sampling the data. Since the anti-aliasing filter has to have a sharp transition band between the passband and the stopband, the order of the filter is very high. However, as the order of the filter increases, the complexity and area of the filter increase, and more power is consumed. Therefore, in this paper, we propose two types of decimation filters, focusing on reducing the area of the hardware. In both cases, the complexity of the circuit is reduced by applying the required down-sampling rate in two times instead of at once. In addition, CIC decimation filters without a multiplier are used as the decimation filter of the first stage. The second stage is implemented using a CIC filter and a down sampler with an anti-aliasing filter, respectively. It is designed with Verilog-HDL and its function and implementation are validated using ModelSim and Quartus, respectively.

Implementation of Temperature and Humidity Sensor Module Based on Z-wave (Z-Wave 기반의 온습도 센서 모듈 구현)

  • Weon, La kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.157-166
    • /
    • 2022
  • The most commonly used wireless communication technologies in IoT technology include ZigBee, WiFi, Bluetooth, and Z-Wave. In particular, Z-Wave is currently one of the preferred wireless communication technologies, with a global market share of 60 % of these technologies. In this research, a temperature and humidity sensor module using a Z-wave protocol was designed and manufactured by referring to the data sheet. Subsequently, the Z-Wave protocol was analyzed during the operation of the sensor module, and the firmware of the controller module was mounted and implemented. In addition, a program for monitoring the temperature and humidity information from the sensor module was developed and validated. Finally, the performance of the sensor module was validated through master distance and low power tests on it and its reception data success rate.

Lightweight Deep Learning Model for Heart Rate Estimation from Facial Videos (얼굴 영상 기반의 심박수 추정을 위한 딥러닝 모델의 경량화 기법)

  • Gyutae Hwang;Myeonggeun Park;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.51-58
    • /
    • 2023
  • This paper proposes a deep learning method for estimating the heart rate from facial videos. Our proposed method estimates remote photoplethysmography (rPPG) signals to predict the heart rate. Although there have been proposed several methods for estimating rPPG signals, most previous methods can not be utilized in low-power single board computers due to their computational complexity. To address this problem, we construct a lightweight student model and employ a knowledge distillation technique to reduce the performance degradation of a deeper network model. The teacher model consists of 795k parameters, whereas the student model only contains 24k parameters, and therefore, the inference time was reduced with the factor of 10. By distilling the knowledge of the intermediate feature maps of the teacher model, we improved the accuracy of the student model for estimating the heart rate. Experiments were conducted on the UBFC-rPPG dataset to demonstrate the effectiveness of the proposed method. Moreover, we collected our own dataset to verify the accuracy and processing time of the proposed method on a real-world dataset. Experimental results on a NVIDIA Jetson Nano board demonstrate that our proposed method can infer the heart rate in real time with the mean absolute error of 2.5183 bpm.

Fundamental and Harmonic Wave Characteristics of Concrete Subjected to Temperature by Strength (고온이력을 받은 콘크리트의 강도별 기본파와 고조파 특성)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Son, Min-Jae;Sasui, Sasui;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.207-208
    • /
    • 2021
  • The non-destructive method using ultrasonic waves has been applied in many studies due to its low damage to the structure and its simple evaluation method and high precision. On the other hand, if the concrete is subjected to a high-temperature, the mechanical properties may be deteriorated due to the micro-crack network and the damage may be severe depending on the strength of the concrete. Therefore, this study attempts to evaluate the fundamental wave behavior of different strength ranges using the ultrasonic non-destructive method for concrete that has been subjected to high-temperature. As a result, the relative power of the fundamental wave was decreased as temperature increase. And it was confirmed that the 2nd and 3rd harmonics were generated at 110 MPa. However, to check the 2nd, 3rd harmonics 110 MPa or less, there is a need for further research considering the ultrasonic output, the output of the sender and receiver, and the appropriate frequency accordingly.

  • PDF

Wideband Resistive LNA based on Noise-Cancellation Technique Achieving Minimum NF of 1.6 dB for 40MHz (40MHz에서 1.6 dB 최소잡음지수를 얻는 잡음소거 기술에 근거한 광대역 저항성 LNA)

  • Choi Goangseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.63-74
    • /
    • 2024
  • This Paper presents a resistive wideband fully differential low-noise amplifier (LNA) designed using a noise-cancellation technique for TV tuner applications. The front-end of the LNA employs a cascode common-gate (CG) configuration, and cross-coupled local feedback is employed between the CG and common-source (CS) stages. The moderate gain at the source of the cascode transistor in the CS stage is utilized to boost the transconductance of the cascode CG stage. This produces higher gain and lower noise figure (NF) than a conventional LNA with inductor. The NF can be further optimized by adjusting the local open-loop gain, thereby distributing the power consumption among the transistors and resistors. Finally, an optimized DC gain is obtained by designing the output resistive network. The proposed LNA, designed in SK Hynix 180 nm CMOS, exhibits improved linearity with a voltage gain of 10.7 dB, and minimum NF of 1.6-1.9 dB over a signal bandwidth of 40 MHz to 1 GHz.