• Title/Summary/Keyword: low pathogenic avian influenza

Search Result 28, Processing Time 0.04 seconds

Novel reassortants of clade 2.3.4.4 H5N6 highly pathogenic avian influenza viruses possessing genetic heterogeneity in South Korea in late 2017

  • Lee, Yu-Na;Cheon, Sun-Ha;Kye, Soo-Jeong;Lee, Eun-Kyoung;Sagong, Mingeun;Heo, Gyeong-Beom;Kang, Yong-Myung;Cho, Hyun-Kyu;Kim, Yong-Joo;Kang, Hyun-Mi;Lee, Myoung-Heon;Lee, Youn-Jeong
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.850-854
    • /
    • 2018
  • Novel H5N6 highly pathogenic avian influenza viruses (HPAIVs) were isolated from duck farms and migratory bird habitats in South Korea in November to December 2017. Genetic analysis demonstrated that at least two genotypes of H5N6 were generated through reassortment between clade 2.3.4.4 H5N8 HPAIVs and Eurasian low pathogenic avian influenza virus in migratory birds in late 2017, suggesting frequent reassortment of clade 2.3.4.4 H5 HPAIVs and highlighting the need for systematic surveillance in Eurasian breeding grounds.

Control and Prevention Strategies of Avian Influenza (조류독감 방제전략)

  • 송창선;권지선;이현정;이중복;박승용;최인수;이윤정;김재홍;모인필
    • Korean Journal of Poultry Science
    • /
    • v.31 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • Avian influenza viruses infect humans, horses, swine, other mammals, and a wide variety of domesticated and wild birds. Modem poultry industries worldwide are at risk of infection with avian influenza. Low pathogenic avian influenza can easily change to highly pathogenic form especially when introduced into areas of high density commercial poultry. Outbreaks of highly pathogenic avian influenza are becoming progressively more expensive to control according to the growth of the poultry industry worldwide. Future strategies for avian influenza control and prevention should involve a combination of early detection and characterization of virus using advanced molecular biologic techniques, quarantine, selective depopulation and vaccination of flocks.

Genetic Analysis of H7N7 Avian Influenza Virus Isolated From Waterfowl in South Korea in 2016 (2016년 한국 야생조류에서 분리한 H7N7 조류인플루엔자 바이러스 유전자 분석)

  • Dires, Berihun;Seo, Sang Heui
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.962-968
    • /
    • 2018
  • Type A influenza virus is circulating in wild birds and can infect wide ranges of hosts such as humans, pigs, domestic birds, and other mammals. Many subtypes of avian influenza viruses are circulating in aquatic birds. Most avian influenza viruses found in aquatic birds are low pathogenic avian influenza viruses. Highly pathogenic avian influenza viruses have been found in waterfowls since 2005. It is known that H5 and H7 subtypes of avian influenza viruses can be mutated into highly pathogenic avian influenza viruses in domestic poultry. In this study, we isolated novel reassortant H7N7 avian influenza virus from the fecal materials of migratory birds in the Western part of South Korea in 2016, and analyzed the sequences of all its eight genes. The genetic analysis of our isolate, A/waterfowl/Korea/S017/2016 (H7N7) indicates that it was reassortant avian influenza virus containing genes of both avian influenza viruses of wild birds and domestic ducks. Phylogenetic analysis showed that our isolate belongs to Eurasian lineage of avian influenza virus. Since avian influenza viruses continue to evolve, and H7-subtype avian influenza virus can mutate into the highly pathogenic avian influenza viruses, which cause the great threat to humans and animals, we closely survey the infections in both wild birds, and domestic poultry, and mammals.

Comparison of Mycoplasma Prevalence and Protection Rate of Low Pathogenic Avian Influenza between Traditional Cage and Animal Welfare Systems (복지농장과 일반농장간 마이코플라즈마 유병율 및 조류인플루엔자 저항성 비교)

  • Kim, Deok-hwan;Kim, Kyu-jik;Song, Chang-seon
    • Korean Journal of Poultry Science
    • /
    • v.46 no.4
    • /
    • pp.271-277
    • /
    • 2019
  • In recent years, consumers have recognized the issue of and expressed concern over farm animal welfare. Therefore, worldwide, chicken farms are transitioning from traditional caged breeding systems to welfare-oriented breeding systems. In this study, we further analyzed and compared the prevalence and protection rate of various diseases by challenging chickens under conventional and welfare-oriented breeding conditions with low pathogenic avian influenza. Ten chickens were randomly selected from each farm (conventional and welfare) from which Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) were identified and isolated. Additionally, low pathogenic avian influenza (LPAI) were challenged to broilers from each farm and samples were collected from these chickens using oral and cloacal swabs to investigate viral shedding and titer. The results showed that Mycoplasma infection did not significantly differ between breeding systems. Initially, LPAI viral shedding and titer significantly differed between breeding systems post-challenge, but as the experiment progressed, there was ultimately no significant difference.

Current situation and control strategies of H9N2 avian influenza in South Korea

  • Mingeun Sagong;Kwang-Nyeong Lee;Eun-Kyoung Lee;Hyunmi Kang;Young Ki Choi;Youn-Jeong Lee
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.5.1-5.16
    • /
    • 2023
  • The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was introduced in June 2020 and has spread nationwide. This study reviews the history, genetic and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review may provide some clues for establishing control strategies for endemic AIV and a newly introduced Y280 lineage of H9N2 AI in South Korea.

Identification of Differentially Expressed Genes in Ducks in Response to Avian Influenza A Virus Infections

  • Ndimukaga, Marc;Won, Kyunghye;Truong, Anh Duc;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2020
  • Avian influenza (AI) viruses are highly contagious viruses that infect many bird species and are zoonotic. Ducks are resistant to the deadly and highly pathogenic avian influenza virus (HPAIV) and remain asymptomatic to the low pathogenic avian influenza virus (LPAIV). In this study, we identified common differentially expressed genes (DEGs) after a reanalysis of previous transcriptomic data for the HPAIV and LPAIV infected duck lung cells. Microarray datasets from a previous study were reanalyzed to identify common target genes from DEGs and their biological functions. A total of 731 and 439 DEGs were identified in HPAIV- and LPAIV-infected duck lung cells, respectively. Of these, 227 genes were common to cells infected with both viruses, in which 193 genes were upregulated and 34 genes were downregulated. Functional annotation of common DEGs revealed that translation related gene ontology (GO) terms were enriched, including ribosome, protein metabolism, and gene expression. REACTOME analyses also identified pathways for protein and RNA metabolism as well as for tissue repair, including collagen biosynthesis and modification, suggesting that AIVs may evade the host defense system by suppressing host translation machinery or may be suppressed before being exported to the cytosol for translation. AIV infection also increased collagen synthesis, showing that tissue lesions by virus infection may be mediated by this pathway. Further studies should focus on these genes to clarify their roles in AIV pathogenesis and their possible use in AIV therapeutics.

Prevalence of major legal communicable diseases in chicken and ducks in Jeonbuk province (2004~2008) (전북지역에서 2004~2008년에 닭과 오리에서 법정전염병 발생동향 분석)

  • Hur, Boo-Hong;Lee, Jeong-Won;Song, Hee-Jong
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • Prevalence of major legal communicable diseases in chickens and ducks, which had occurred in Jeonbuk province from year 2004 to 2008. Total 283 farms 1,419,244 chickens and ducks have been affected by avian diseases. Specifically, fowl typhoid (FT) occurred in 92 farms 416,600 chickens, Marek's disease (MD) in 45 farms 145,563, duck virus hepatitis (DVH) in 31 farms 199,200, infectious bursal disease (IBD) in 27 farms 113,220, infectious bronchitis (IB) in 27 farms 280,300, low pathogenic avian influenza (LPAI) in 26 farms 78,495, avian mycoplasmosis in 16 farms 103,774, Newcastle disease (ND) occurred in 11 farms 61,052, avian encephalomyelitis (AE) in 7 farms 21,000, Pullorum disease (PD) occurred in 1 farm 40. According to total analysis about major legal communicable diseases, 1 species of first-class legal communicable diseases have occurred, 3 species of second-class and 6 species of third-class all adding up to 10 species. In the first-class diseases, Newcastle disease have occurred. Pullorum and fowl typhoid, duck virus hepatitis in the second-class have occurred and as third-class diseases, Marek's disease, Infectious bursal disease, Infectious bronchitis, avian mycoplasmosis, avian encephalomyelitis, low pathogenic avian influenza have occurred.

Genetic and biological characteristics of recent Korean isolates of avian influenza virus subtype H9N2

  • Acharya, Madhav Prasad;Kwon, Hyuk-Joon;Kim, Il-Hwan;Lee, Youn-Jeong;Kim, Jae-Hong
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.223-230
    • /
    • 2012
  • The worldwide distribution and continuing genetic mutation of avian influenza virus (AIV) has been posed a great threat to human and animal health. A comparison of 3 isolates of AIV H9N2, A/chicken/Korea/KBNP-0028/00 (H9N2) (KBNP-0028), A/chicken/Korea/SNU8011/08 (H9N2) (SNU 8011) and an inactivated oil vaccine strain A/chicken/Korea/01310/01 (H9N2) (01310), was performed. The former 2 AIVs were isolated from field cases before and after the application of an inactivated H9N2 vaccine in 2007, respectively. The antigenic relationship, viral shedding, tissue tropism and genetic analysis were examined. The comparison of virus shedding from the cloaca and the oropharynx revealed that both isolates were more frequently isolated from the upper respiratory tract (90~100%) 1 day post inoculation (DPI) compared with isolation 5 DPI from gastrointestinal tracts (10~60%). Moreover, the isolate KBNP-0028 were recovered from all organs including bone marrow, brain and kidneys, indicating higher ability for broad tissue dissemination than that of SNU 8011. KBNP-0028 replicated earlier than other strains and with a higher titer than SNU 8011. In full-length nucleotide sequences of the NA gene and a partial sequence of the HA gene of SNU 8011, we found that there might be significant changes in tissue tropism, virus replication and genetic mutation in AIV H9N2 isolates.

Molecular Characterization of an H5N3 Influenza Virus Isolated from Spot-Billed Duck

  • Lee, Jin Hwa;Kwon, Hyuk Moo;Sung, Haan Woo
    • Korean Journal of Poultry Science
    • /
    • v.40 no.3
    • /
    • pp.243-252
    • /
    • 2013
  • Among the 16 hemagglutinin (HA) subtypes of avian influenza virus (AIV), only the H5 and H7 subtypes have caused highly pathogenic avian influenza (HPAI) in poultry. However, most H5 or H7 subtype viruses are categorized as low pathogenic avian influenza (LPAI). Some AIVs, including the H5 and H7 HPAI viruses, have shown the ability to infect humans directly. In this study, we describe the biological and molecular characterization of an H5N3 AIV (SBD/KR/KNU SYG06/06) isolated from spot-billed duck (Anas poecilorhyncha) in Korea. A phylogenetic analysis of the eight viral genes showed that the SBD/KR/KNU SYG06/06 isolate belongs to the Eurasian lineage and that the SBD/KR/KNU SYG06/06 isolate was clearly different from HPAI H5N1 strains, including human isolates and the Italian HPAI H5N2 strains. Additionally, no relationship was found between SBD/KR/KNU SYG06/06 and the Korean HPAI H5N1 isolates. The SBD/KR/ KNU SYG06/06 isolate had avian specific receptor binding site residues in the HA protein and the four C-terminal amino acids in the NS1 protein. The HA protein of the SBD/KR/KNU SYG06/06 isolate exhibited the typical LPAI motif at the cleavage site and this virus produced no cytopathic effects in MDCK cells without trypsin. Given these results, we suggest that the H5N3 AIV isolated from the spot-billed duck should be considered an LPAI virus and should have no pathogenic effect in humans.