• Title/Summary/Keyword: low cycle fatigue(LCF)

Search Result 48, Processing Time 0.021 seconds

Deformation and Failure Behavior during Thermo-Mechanical Fatigue of a Nickel-Based Single Crystal Superalloy (열기계적 피로에 따른 단결정 니켈기 초내열합금의 변형 및 파괴거동)

  • Kang, Jeong Gu;Hong, Hyun Uk;Choi, Baig Gyu;Kim, In Soo;Kang, Nam Hyun;Jo, Chang Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.112-120
    • /
    • 2011
  • The out-of-phase thermo-mechanical fatigue (OP TMF) in a <001> oriented single crystal nickel-based superalloy CMSX-4 has been studied. OP TMF life was less than a half of low cycle fatigue(LCF) life in spite of a small hysteresis loop area of OP TMF compared to that of LCF. The failure was caused by the initiation of a crack at the oxide-layered surface followed by its planar growth along the <100> ${\gamma}$ channel in both LCF and OP TMF. However, deformation twins appeared near the major crack of OP TMF. The multiple groups of parallel twin plates on {111} planes provided a preferential path for crack propagation, which caused a significant decrease in OP TMF life. Additionally, the analysis on the surface crack morphology revealed that the tensile strain at the minimum temperature of OP TMF was found to accelerate the crack propagation.

Low Cycle Fatigue Behavior of Alloy617 Weldment at 850℃ (850℃에서의 Alloy 617 용접재의 저사이클 피로 특성)

  • Hwang, Jeong Jun;Kim, Seon Jin;Kim, Woo Gon;Kim, Eung-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.193-198
    • /
    • 2017
  • Alloy 617 is one of the primary candidate materials to be used in a very high temperature reactor (VHTR) system as an intermediate heat exchanger (IHX). To investigate the low cycle fatigue behavior of Alloy 617 weldments at a high temperature of $850^{\circ}C$, fully reversed strain-controlled fatigue tests were conducted with the total strain values ranging from 0.6~1.5%. The weldment specimens were machined using the weld pads fabricated with a single V-grove configuration by gas tungsten arc welding (GTAW) process. The fatigue life is reduced as the total strain range increases. For all testing conditions, the cyclic stress response behavior of the Alloy 617 weldments exhibited the initial cyclic strain hardening phenomenon during the initial small number of cycles. Furthermore, the overall fatigue cracking and the propagation or cracks showed a transgranular failure mode.

A study on the fatigue and fracture characteristics of localized nuclear reactor vessel material (국산 원자로용기 재료의 피로 및 파괴특성 연구)

  • Jeong, Sun-Eok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1626-1635
    • /
    • 1997
  • It is important to ensure the reliability of the first localized reactor vessel steel. To satisfy with this purpose, a study on the impact/hardness, low cycle fatigue(LCF), crack growth rate(da/dN) and fracture toughness( ) of base material(BM) and weld metal(WM) were performed under room temperature air and corrosion conditions. A summary of the results is as folows : (1) Charpy impact absorbed energy of BM was the highest value, heat affected zoon(HAZ) and the lowest, WM. The hardness of BM was similar to HAZ. (2) Coefficients of Manson equation using the monotonic tensile test data were obtained for the present material. (3) The effects of stress ratio and ambient (120.deg. C and NaCl) condition on da/dN were investigated, da/dN with NaCl condition expressed the highest value. (4) The results of Charpy V-notch impact test had good correlation with $K_{IC}$ characteristics and the lowest curve of $K_{IC}$ for BM was derived, more researches about WM and HAZ are required hereafter.

Strain energy-based fatigue life prediction under variable amplitude loadings

  • Zhu, Shun-Peng;Yue, Peng;Correia, Jose;Blason, Sergio;De Jesus, Abilio;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.151-160
    • /
    • 2018
  • With the aim to evaluate the fatigue damage accumulation and predict the residual life of engineering components under variable amplitude loadings, this paper proposed a new strain energy-based damage accumulation model by considering both effects of mean stress and load interaction on fatigue life in a low cycle fatigue (LCF) regime. Moreover, an integrated procedure is elaborated for facilitating its application based on S-N curve and loading conditions. Eight experimental datasets of aluminum alloys and steels are utilized for model validation and comparison. Through comparing experimental results with model predictions by the proposed, Miner's rule, damaged stress model (DSM) and damaged energy model (DEM), results show that the proposed one provides more accurate predictions than others, which can be extended for further application under multi-level stress loadings.

A model of fatigue crack growth based on plastic stretch at the crack tip (균열선단의 소성스트레치를 이용한 피로균열성장모델)

  • Ju, Yeong Sik;Kim, Jae Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • The fatigue crack growth model is derived and the retardation model is proposed. The fatigue crack growth model considers the residual plastic stretch on the crack surface which results from the plastic deformation at the tip of fatigue crack. The fatigue crack growth rate is calculated by using the cumulative fatigue damage and plastic strain energy in the material elements at the crack tip. This model gives the crack growth rate in reasonable agreement with test data for aluminum alloy AL6061-T651 and 17-4PH casting steel. The fatigue crack growth retardation model is based on the residual plastic stretch produced from a tensile overload which reduced the plastic strain range of the following load cycles. A strip-yield model of a crack tip plasticity is used for the calculation of a plastic zone size. The proposed retardation model characterized the observed features and delayed retardation of the fatigue crack growth under tensile overload.

CFD ANALYSIS AND EXPERIMENT OF EXHAUST MANIVERTER OF GASOLINE ENGINE (가솔린 엔진용 배기매니버터 유동특성 해석 및 시험에 관한 연구)

  • Eom, Y.S.;Park, N.S.;Shin, C.G.;Lee, J.J.;Yi, G.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.468-472
    • /
    • 2010
  • To develop the Exhaust Maniverter(Manifold and converter) it needs to consider flow characteristics related to durability and performance of the catalyst, manufacturability, etc. This paper presents the analysis results regarding to flow characteristics such as flow uniformity, tangential speed, O2 sensor sensitivity and CHT (conjugate heat transfer) for the LCF(Low Cycle Fatigue) for gasoline 2.0 liter engine. The results are satisfactorily corresponded to the general criteria. Also skin temperature and pressure drop wire measured at the Engine Bench. These results can be useful for the design guide for Exhaust Maniverter.

  • PDF

Web-based Materials Property Database System (Web 기반 재료물성 데이터베이스 시스템)

  • Lee, W.K.;Baek, U.B.;Park, P.;Jung, I.H.;Kim, D.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.126-131
    • /
    • 2001
  • Materials property data are necessary to secure the reliability of failure prevention techniques such as inspection and remaining life assessment of civil infrastructure and industrial facilities. However, there is no properly collected data in Korea, and those foreign data are hard to use because of the scattering of the sources, the difference of standards, etc. In this paper, materials property database system which has been constructed at Korea Research Institute of Standards and Science is introduced. Constructed database contains 145,000 numeric data of materials property for 600 kinds of metals and can be retrieved on the internet. The database system provides graphical user interface-based information searching functions necessary for the life evaluation and safety analysis.

  • PDF

온도 변화에 따른 압력센서 배선의 피로수명 평가

  • 심재준;한근조;김태형;한동섭;이성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.90-90
    • /
    • 2004
  • 반도체 집적회로 제작 기술을 기반으로 하여 각종 물리량 감지를 위한 미세기계구조물과 각종 물리량의 전기신호로의 변화, 증폭, 보정을 위한 전자회로를 동시에 제작하여 하나의 칩 상에 집적화시킬 수 있는 MEMS 기술이 등장하게 됨에 따라 센서의 소형화, 경량화, 다기능화, 고성능화와 함께 비용을 최소화할 수 있는 장점을 가진 반도체 센서가 급격하게 개발되어 자동차 산업에 상용화되고 있다. 특히 반도체 압력센서는 엔진 제어용 MAP센서에서 가장 먼저 상품화되었으며, 현재 타이어압 센서 그리고 탱크 연료압력센서가 상품화되었고, 에어콘 압력 센서등도 실리콘 센서로 대체하기 위한 단계에와 있다.(중략)

  • PDF