DOI QR코드

DOI QR Code

Deformation and Failure Behavior during Thermo-Mechanical Fatigue of a Nickel-Based Single Crystal Superalloy

열기계적 피로에 따른 단결정 니켈기 초내열합금의 변형 및 파괴거동

  • Kang, Jeong Gu (High Temperature Materials Group, Korea Institute of Materials Science) ;
  • Hong, Hyun Uk (High Temperature Materials Group, Korea Institute of Materials Science) ;
  • Choi, Baig Gyu (High Temperature Materials Group, Korea Institute of Materials Science) ;
  • Kim, In Soo (High Temperature Materials Group, Korea Institute of Materials Science) ;
  • Kang, Nam Hyun (School of Materials Science and Engineering, Busan National University) ;
  • Jo, Chang Yong (High Temperature Materials Group, Korea Institute of Materials Science)
  • 강정구 (한국기계연구원 부설 재료연구소 내열재료연구그룹) ;
  • 홍현욱 (한국기계연구원 부설 재료연구소 내열재료연구그룹) ;
  • 최백규 (한국기계연구원 부설 재료연구소 내열재료연구그룹) ;
  • 김인수 (한국기계연구원 부설 재료연구소 내열재료연구그룹) ;
  • 강남현 (부산대학교 재료공학부) ;
  • 조창용 (한국기계연구원 부설 재료연구소 내열재료연구그룹)
  • Received : 2010.09.15
  • Published : 2011.02.25

Abstract

The out-of-phase thermo-mechanical fatigue (OP TMF) in a <001> oriented single crystal nickel-based superalloy CMSX-4 has been studied. OP TMF life was less than a half of low cycle fatigue(LCF) life in spite of a small hysteresis loop area of OP TMF compared to that of LCF. The failure was caused by the initiation of a crack at the oxide-layered surface followed by its planar growth along the <100> ${\gamma}$ channel in both LCF and OP TMF. However, deformation twins appeared near the major crack of OP TMF. The multiple groups of parallel twin plates on {111} planes provided a preferential path for crack propagation, which caused a significant decrease in OP TMF life. Additionally, the analysis on the surface crack morphology revealed that the tensile strain at the minimum temperature of OP TMF was found to accelerate the crack propagation.

Keywords

Acknowledgement

Supported by : 산업기술 연구회

References

  1. J. Zrnik, M. Hazlinger, M. Zitnansky, and Z. G. Wang, J. Mat. Sci. Technol. 11, 8 (1995).
  2. F. Liu, Z. G. Wang, S. H. Ai, Y. C. Wang, X. F. Sun, T. Jin, and H. R. Guan, Scripta Mater. 48 1265 (2003). https://doi.org/10.1016/S1359-6462(03)00051-4
  3. J. M. Martinez-Esnaola, A. Martin-Meizoso, E. E. Affeldt, A. Bennett, and M. Fuentes, Fatigue Fract. Eng. Mater. Struct. 20, 771 (1997). https://doi.org/10.1111/j.1460-2695.1997.tb00307.x
  4. K. Schoeler and H. J. Christ, Int. J. Fatigue 23, 767 (2001). https://doi.org/10.1016/S0142-1123(01)00039-1
  5. D. Balevic, R. Burger, and D. Forry, GE Gas Turbine Reference Library, GER-3620K, November (2004).
  6. C. M. Whan and C. M. F. Rae, Proc. of the 6th Int. Charles Parsons Turbine Conf. (eds. A. Strang, R. D. Conroy, W. M. Banks, M. Blackler, J. Leggett, G. M. McColvin, S. Simpson, M. Smith, F. Starr and R. W. Vanstone), p.789, The Institute of Materials, Minerals and Mining , Trinity College Dublin, Ireland (2003).
  7. V. Brien and B. Decamps, Mat. Sci. Eng. A 316, 18 (2001). https://doi.org/10.1016/S0921-5093(01)01235-7
  8. M. Ott and H. Mughrabi, Mat. Sci. Eng. A 272, 24 (1999). https://doi.org/10.1016/S0921-5093(99)00453-0
  9. J. J. Moverare, S. Johansson, and R. C. Reed, Acta Mater. 57, 2266 (2009). https://doi.org/10.1016/j.actamat.2009.01.027
  10. J. G. Jung, S. T. Oh, W. D. Choi, D. H. Lee, J. D. Lim, and Y. J. Oh, J. Kor. Inst. Met. & Mater. 47, 707 (2009).
  11. M. Okazaki and M. Sakaguchi, Int. J. Fatigue 30, 318 (2008). https://doi.org/10.1016/j.ijfatigue.2007.01.044
  12. J. X. Zhang, Y. Ro, H. Zhou, and H. Harada, Scripta Mater. 54, 655 (2006). https://doi.org/10.1016/j.scriptamat.2005.10.030
  13. K. Kakehi, Scripta Mater. 41, 461 (1999). https://doi.org/10.1016/S1359-6462(99)00191-8
  14. L. Kovarik, R. R. Unocic, Ju Li, P. Sarosi, C. Shen, Y. Wang, and M. J. Mills, Progress in Mater. Sci. 54, 839 (2009). https://doi.org/10.1016/j.pmatsci.2009.03.010
  15. R. Volkl, U. Glatzel, and M. Feller-Kniepmeier, Acta Mater. 46, 4395 (1998). https://doi.org/10.1016/S1359-6454(98)00085-8
  16. M. V. Nathal, R. A. Mackay, and R. G. Garlick, Mater. Sci. Eng. 75, 195 (1985). https://doi.org/10.1016/0025-5416(85)90189-2
  17. P. Lukas, J. Cadek, V. Sustek, and L. Kunz, Mat. Sci. Eng. A 208, 149 (1996). https://doi.org/10.1016/0921-5093(95)10052-0
  18. S. Socrate and D. M. Parks, Acta Metall. Mater. 41, 2185 (1993). https://doi.org/10.1016/0956-7151(93)90389-A
  19. S. Kraft, I. Altenberger, and H. Mughrabi, Scripta Metall. Mater. 32, 411 (1995). https://doi.org/10.1016/S0956-716X(99)80074-0
  20. H. Zhou, Y. Ro, H. Harada, Y. Aoki, and M. Arai, Mat. Sci. Eng. A 381, 20 (2004). https://doi.org/10.1016/j.msea.2004.04.051
  21. D. M. Shah and D. N. Duhl, Superalloys 1984 (eds. M. Gell et al.), p.105, AIME, Warrendale, PA (1984).