• Title/Summary/Keyword: low complexity high speed

Search Result 118, Processing Time 0.03 seconds

A High-Speed 2-Parallel Radix-$2^4$ FFT Processor for MB-OFDM UWB Systems (MB-OFDM UWB 통신 시스템을 위한 고속 2-Parallel Radix-$2^4$ FFT 프로세서의 설계)

  • Lee, Jee-Sung;Lee, Han-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.533-534
    • /
    • 2006
  • This paper presents the architecture design of a high-speed, low-complexity 128-point radix-$2^4$ FFT processor for ultra-wideband (UWB) systems. The proposed high-speed, low-complexity FFT architecture can provide a higher throughput rate and low hardware complexity by using 2-parallel data-path scheme and single-path delay-feedback (SDF) structure. This paper presents the key ideas applied to the design of high-speed, low-complexity FFT processor, especially that for achieving high throughput rate and reducing hardware complexity. The proposed FFT processor has been designed and implemented with the 0.18-m CMOS technology in a supply voltage of 1.8 V. The throughput rate of proposed FFT processor is up to 1 Gsample/s while it requires much smaller hardware complexity.

  • PDF

Design of Low-Complexity MIMO-OFDM Symbol Detector for High Speed WLAN Systems (고속 무선 LAN 시스템을 위한 저복잡도 MIMO-OFDM 심볼 검출기 설계)

  • Im, Jun-Ha;Kim, Jae-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.447-448
    • /
    • 2008
  • This paper presents a low-complexity design and implementation results of a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) symbol detector for high speed wireless LAN (WLAN) systems. The proposed spatial division multiplexing (SDM) symbol detector is designed by HDL and synthesized to gate-level circuits using 0.18um CMOS library. The total gate count for the symbol detector is 238K.

  • PDF

High-Speed Low-Complexity Reed-Solomon Decoder using Pipelined Berlekamp-Massey Algorithm and Its Folded Architecture

  • Park, Jeong-In;Lee, Ki-Hoon;Choi, Chang-Seok;Lee, Han-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.193-202
    • /
    • 2010
  • This paper presents a high-speed low-complexity pipelined Reed-Solomon (RS) (255,239) decoder using pipelined reformulated inversionless Berlekamp-Massey (pRiBM) algorithm and its folded version (PF-RiBM). Also, this paper offers efficient pipelining and folding technique of the RS decoders. This architecture uses pipelined Galois-Field (GF) multipliers in the syndrome computation block, key equation solver (KES) block, Forney block, Chien search block and error correction block to enhance the clock frequency. A high-speed pipelined RS decoder based on the pRiBM algorithm and its folded version have been designed and implemented with 90-nm CMOS technology in a supply voltage of 1.1 V. The proposed RS(255,239) decoder operates at a clock frequency of 700 MHz using the pRiBM architecture and also operates at a clock frequency of 750 MHz using the PF-RiBM, respectively. The proposed architectures feature high clock frequency and low-complexity.

An Efficient Architecture Design of Low Complexity in Quantization of H.264/AVC

  • Lama, Ramesh Kumar;Yun, Jung-Hyun;Kwon, Goo-Rak
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1238-1242
    • /
    • 2011
  • An efficient architecture for the reduction of complexity in forward quantization of H.264/AVC is presented in this paper. Since the multiplication operation in forward quantization plays crucial role in complexity of algorithm. More efficient quantization architecture with simplified high speed multiplier is proposed. It uses the modification of the quantization operation and the high speed multiplier is applied for simplification of quantization process.

Delay Insensitive Asynchronous Circuit Design Based on New High-Speed NCL Cells (새로운 고속의 NCL 셀 기반의 지연무관 비동기 회로 설계)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.1-6
    • /
    • 2014
  • The delay-insensitive Null Convention Logic (NCL) asynchronous design as one of innovative asynchronous logic design methodologies has many advantages of inherent robustness, power consumption, and easy design reuses. However, transistor-level structures of conventional NCL gate cells have weakness of low speed, high area overhead or high wire complexity. Therefore, this paper proposes a new high-speed NCL gate cells designed at transistor level for high-speed, low area overhead, and low wire complexity. The proposed NCL gate cells have been compared to the conventional NCL gates in terms of circuit delay, area and power consumption.

Prediction of Aeroacoustics Noise of Pantograph via Low Speed Wind Tunnel Test and Flow Simulation (저속풍동실험 및 유동해석을 통한 고속전철 판토그라프의 유동소음 해석)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1207-1214
    • /
    • 2001
  • The paper deals with the computational approach in analysis and design of pantograph panhead strips of high-speed railway in aerodynamic and aeroacoustic concerns. Pantograph is an equipment such that the electric power is supplied from catenary system to train. Due to the nature of complexity in high-speed fluid flow, turbulence and downstream vortices result in the instability in the aerodynamic contact between panhead strips and catenary system, and consequently generate the considerable levels of flow-induced sound. In this paper, based on the preceding low speed wind-tunnel test and simulations, the aerodynamic and aeroacoustic characteristics in low speed are analyzed.

  • PDF

Low Latency Algorithms for Iterative Codes

  • Choi, Seok-Soon;Jung, Ji-Won;Bae, Jong-Tae;Kim, Min-Hyuk;Choi, Eun-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.205-215
    • /
    • 2007
  • This paper presents low latency and/or computation algorithms of iterative codes of turbo codes, turbo product codes and low density parity check codes for use in wireless broadband communication systems. Due to high coding complexity of iterative codes, this paper focus on lower complexity and/or latency algorithms that are easily implementable in hardware and further accelerate the decoding speed.

Study on signal processing techniques for low power and low complexity IR-UWB communication system using high speed digital sampler (고속 디지털 샘플러 기술을 이용한 저전력, 저복잡도의 초광대역 임펄스 무선 통신시스템 신호처리부 연구)

  • Lee, Soon-Woo;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.9-15
    • /
    • 2006
  • In this paper, signal processing techniques for noncoherent impulse-radio-based UWB (IR-UWB) communication system are proposed to provide system implementation of low power consumption and low complexity. The proposed system adopts a simple modulation technique of OOK (on-oft-keying) and noncoherent signal detection based on signal amplitude. In particular, a technique of a novel high speed digital sampler using a stable, lower reference clock is developed to detect nano-second pulses and recover digital signals from the pulses. Also, a 32 bits Turyn code for data frame synchronization and a convolution code as FEC are applied, respectively. To verify the proposed signal processing techniques for low power, low complexity noncoherent IR-UWB system, the proposed signal processing technique is implemented in FPGA and then a short-range communication system for wireless transmission of high quality MP3 data is designed and tested.

Design of Low-Power and Low-Complexity MIMO-OFDM Baseband Processor for High Speed WLAN Systems (고속 무선 LAN 시스템을 위한 저전력/저면적 MIMO-OFDM 기저대역 프로세서 설계)

  • Im, Jun-Ha;Cho, Mi-Suk;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.940-948
    • /
    • 2008
  • This paper presents a low-power, low-complexity design and implementation results of a high speed multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless LAN (WLAN) baseband processor. The proposed processor is composed of the physical layer convergence procedure (PLCP) processor and physical medium dependent (PMD) processor, which have been optimized to have low-power and reduced-complexity architecture. It was designed in a hardware description language (HDL) and synthesized to gate-level circuits using 0.18um CMOS standard cell library. As a result, the proposed TX-PLCP processor reduced the power consumption by as much as 81% over the bit-level operation architecture. Also, the proposed MIMO symbol detector reduced the hardware complexity by 18% over the conventional SQRD-based architecture with division circuits and square root operations.

High-Throughput Low-Complexity Successive-Cancellation Polar Decoder Architecture using One's Complement Scheme

  • Kim, Cheolho;Yun, Haram;Ajaz, Sabooh;Lee, Hanho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.427-435
    • /
    • 2015
  • This paper presents a high-throughput low-complexity decoder architecture and design technique to implement successive-cancellation (SC) polar decoding. A novel merged processing element with a one's complement scheme, a main frame with optimal internal word length, and optimized feedback part architecture are proposed. Generally, a polar decoder uses a two's complement scheme in merged processing elements, in which a conversion between two's complement and sign-magnitude requires an adder. However, the novel merged processing elements do not require an adder. Moreover, in order to reduce hardware complexity, optimized main frame and feedback part approaches are also presented. A (1024, 512) SC polar decoder was designed and implemented using 40-nm CMOS standard cell technology. Synthesis results show that the proposed SC polar decoder can lead to a 13% reduction in hardware complexity and a higher clock speed compared to conventional decoders.