• 제목/요약/키워드: low cement content

검색결과 223건 처리시간 0.021초

저발열시멘트 모르터의 호학저항성에 대한 실험적 연구 (An Experimental Study on the Resistance of Low-Heat Cement Mortar in Chemical Attack)

  • 문한영;신화철;김성수;강석화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.183-186
    • /
    • 1998
  • This paper deals with 28, 56, 91 days age compressive strength and ratio of weight when OPC and Low-Heat cement mortar immersed in chemical solution. As a result of experiment, the resistance of Low-Heat Cement motar in chemical attack is more effective than that of OPC, because of lower $C_3$A content and Pozzolanic reactions. Especially in long term age compressive strength, Low-Heat cement mortar shows higher strength in all kind of chemical solution compared with compressive strength of OPC motar.

  • PDF

고로 슬래그 시멘트 페이스트 내 자유염화물량과 물가용성 염화물량 평가에 관한 연구 (A Study on the Evaluation of the Water-soluble Chloride Content and Free-chloride Content in Blast Furnace Slag Cement Pastes)

  • 조영국;소승영
    • 한국건축시공학회지
    • /
    • 제4권4호
    • /
    • pp.95-101
    • /
    • 2004
  • The purpose of this paper is to compare free-chloride content with water-soluble chloride in blast furnace cement(BSC) paste. The content of free-chloride in cement paste measured by pore solution analysis and water-soluble chloride measured by ASTM. The result of this study are as follows: 1. The concentration of chloride ion in pore solution of BSC-solidified matrix is almost as low as 43-71% compared to that of OPC-solidified matrix containing the same chloride content in cement paste. 2. The binding capacity of specimens, OPC Pl-P5, are 93.5-77%, but the binding capacity of specimens, BSC Pl-P5 are 97.1-86.1%, which is to be as high as 2-9.1% compared to OPC containing the same chloride content. 3. In terms of water-soluble chloride content in BSC paste are 15-31.7 percent of chloride addition but free-chloride content in pore solution are 2.9-13.9 percent of chloride addition. The free-chloride content in pore solution is 19.3-43.8 percent lower for the water-soluble chloride content in cement paste.

시공조건이 시멘트계 고화토의 투수계수에 미치는 영향 (Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications)

  • 정문경;김강석;우제윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

조분 시멘트의 치환율 변화에 따른 저발열 콘크리트의 기초적 특성 (Fundamental Properties of the Low Heat Concrete depending on the Coarse Particle Cement)

  • 노상균;백대현;차완호;장덕배;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 추계 학술논문 발표대회
    • /
    • pp.45-48
    • /
    • 2007
  • This study investigates mechanical properties of the concrete using coarse particle cement which is manufactured by the classifying process. The variable factors are 3 types of W/C such as 40, 50, and 60% and 5types of the replacement of the coarse particle cement such as 0, 25, 50, 75, and 100%. As the results, amount of SP agent to secure the target fluidity is gradually declined in accordance with increasing CC replacement. There is no special tendency for target air content, but setting time is delayed according to increasing CC content. The peak of the simple adiabatic temperature rise is gradually decreased in accordance with increasing CC content, and approach time to peak is slightly delayed. The compressive strength is comparatively delayed.

  • PDF

Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix

  • Nam, I.W.;Lee, H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.427-438
    • /
    • 2015
  • The present work proposes a new image analysis method for the evaluation of the multi-walled carbon nanotube (MWNT) distribution in a cement matrix. In this method, white cement was used instead of ordinary Portland cement with MWNT in an effort to differentiate MWNT from the cement matrix. In addition, MWNT-embedded cement composites were fabricated under different flows of fresh composite mixtures, incorporating a constant MWNT content (0.6 wt%) to verify correlation between the MWNT distribution and flow. The image analysis demonstrated that the MWNT distribution was significantly enhanced in the composites fabricated under a low flow condition, and DC conductivity results revealed the dramatic increase in the conductivity of the composites fabricated under the same condition, which supported the image analysis results. The composites were also prepared under the low flow condition (114 mm < flow < 126 mm), incorporating various MWNT contents. The image analysis of the composites revealed an increase in the planar occupation ratio of MWNT, and DC conductivity results exhibited dramatic increase in the conductivity (percolation phenomena) as the MWNT content increased. The image analysis and DC conductivity results indicated that fabrication of the composites under the low flow condition was an effective way to enhance the MWNT distribution.

저품위 석회석이 원료밀의 분쇄성과 시멘트 클링커 소성성에 미치는 영향 (Effect of Low-grade Limestone on Raw Mill Grinding and Cement Clinker Sintering)

  • 유동우;박태균;최상민;이창현
    • 한국건설순환자원학회논문집
    • /
    • 제9권1호
    • /
    • pp.20-25
    • /
    • 2021
  • 시멘트의 주 원료인 시멘트 클링커는 주원료로서 석회석을 사용하여 제조되며, 석회석의 품위에 따라 부원료의 사용이 변화되고, 시멘트 클링커의 생산에도 큰 영향을 미치게 된다. 본 연구에서는 시멘트 클링커 원료인 석회석의 CaO 함량의 변화가 Raw Mill 분쇄성과 시멘트 클링커의 소성성에 미치는 영향성을 파악하기 위하여, 석회석 CaO 함량을 변화시킨 조합원료의 분쇄시간 측정으로 분쇄성을 비교 검토하였고, 분쇄된 조합원료를 1350~1500℃의 범위에서 소성하여 소성성 지수 계산에 의한 시멘트 클링커의 소성성을 파악하였다. 석회석의 품위가 낮을수록 조합원료의 분쇄성은 저하하였고, 석회석의 CaO 함량이 낮을수록 소성온도에 따른 F-CaO의 변화가 크게 나타났다. 그에 따라 높은 B.I. 값이 계산되어, 낮은 시멘트 클링커 소성성을 나타내었다. 또한, 시멘트 클링커의 광물분석 결과에서는 소성온도의 증가로 F-CaO 값이 저하하는 경우, Belite 함량의 감소와 그에 따른 Alite 함량의 증가가 관찰되었다. Alite의 경우 석회석 CaO 함량이 증가함에 따라 R형의 비율은 감소하고 M형의 비율이 증가하였다.

실험계획법을 이용한 석회석 시멘트 콘크리트의 최적배합 선정 (Selection of Optimal Mixture of Limestone Cement Paste by Using the Design of Experiment)

  • 김건우;김진만;최선미;김범수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.107-108
    • /
    • 2021
  • In the global trend of countries around the world announcing the declaration of carbon neutrality, the development of low-carbon cement in the cement industry can be seen as a very important issue that can determine the future development of the cement industry in the future. Therefore, this study evaluated the strength characteristics of limestone cement paste with limestone powder of CaCO3 and refinery desulfurization waste catalyst of high Al2O3 content, and using a Minitab mixture design to optimize a limestone cement content. As a resuls it was confirmed that limestone cement paste with 5-10% of limestone powder and 1.25-2.5% of the waste catalyst exhibits similar compressive strength to that of OPC.

  • PDF

Polyurethane 첨가에 의한 HAC/PVA계 MDF 시멘트 복합재료의 수분안정성 영향 (The Effects of Polyurethane Resin on the Water Stability of HAC/PVA Based MDF Cement Composites)

  • 박춘근;김태진;김병권;엄태형;노준석;최상흘
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1037-1044
    • /
    • 1997
  • Mechanical properties and water stability of HAC/PVA based MDF cement composite were investigated using polyurethane(PU) resin, silane coupling agent and various PVA. The results were as follows ; The flexural strength of MDF cement composite increased as increasing with PVA content. Low-viscosity PVA developed higher flexural strength than high-viscosity PVA under a drying curing condition. But the strength of water immersed specimen decreased. Water stability of MDF cement improved as increasing with content of PU. Consequently, water stability of polyurethane 7% added MDF cement was about 2 times higher than that of the controlled specimen. Furthermore, the strength and water stability of diamine group based silane couling agent in using MDF cement increased and improved dramatically.

  • PDF

Sulfate Attack and the Role of Cement Compositions

  • Lee, Seung-Tae;Lee, Seung-Heun
    • 한국세라믹학회지
    • /
    • 제44권9호
    • /
    • pp.465-470
    • /
    • 2007
  • This paper presents an experimental study of the sulfate resistance of mortars and pastes exposed to sodium sulfate solutions up to one year. In order to check deterioration modes due to sulfate attack, the sodium sulfate solution was varied at three concentration steps (3,380, 10,140 and 33,800 ppm of $SO_4^{2-}$ ions), and maintained at ambient temperature. The tests include a visual examination, expansion and compressive strength loss measurements as well as x-ray diffraction tests. The experimental data indicated that the use of cement with a low $C_3A$ content and low silicate ratio has a beneficial effect on the sulfate attack of mortars. In contrast, the mortars with a high $C_3A$ content and high silicate ratio became severely degraded due to the formation of ettringite, gypsum and/or thaumasite in the cement matrix.

Effect of sulfate activators on mechanical property of high replacement low-calcium ultrafine fly ash blended cement paste

  • Liu, Baoju;Tan, Jinxia;Shi, Jinyan;Liang, Hui;Jiang, Junyi;Yang, Yuanxia
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.183-192
    • /
    • 2021
  • Due to economic and environmental benefits, increasing the substitution ratio of ordinary cement by industry by-products like fly ash (FA) is one of the best approaches to reduce the impact of the concrete industry on the environment. However, as the substitution rate of FA increases, it will have an adverse impact on the performance of cement-based materials, so the actual substitution rate of FA is limited to around 10-30%. Therefore, in order to increase the early-age strength of high replacement (30-70%) low-calcium ultrafine FA blended cement paste, sodium sulfate and calcium sulfate dihydrate were used to improve the reactivity of FA. The results show that sodium sulfate has a significant enhancement effect on the strength of the composite pastes in the early and late ages, while calcium sulfate dihydrate has only a slight effect in the late ages. The addition of sodium sulfate in the cement-FA blended system can enhance the gain rate of non-evaporation water, and can decrease the Ca(OH)2 content. In addition, when the sulfate chemical activators are added, the ettringite content increases, and the surface of the FA is dissolved and hydrated.