• Title/Summary/Keyword: low and high temperature

Search Result 8,607, Processing Time 0.046 seconds

Effects of Dietary Protein Sources and Levels on Heat Production and Thermoregulatory Responses of Sheep Exposed to a High Ambient Temperature

  • Sudarman, A.;Ito, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1523-1528
    • /
    • 2000
  • Four Suffolk ewes were used in Latin Square switch over design to study the effects of varying levels and sources of protein on heat production and thermoregulatory responses at daytime high ($33^{\circ}C$ temperature. They were fed Italian ryegrass hay supplemented with fishmeal and/or urea, providing three different levels of crude protein (CP) (low/unsupplemented: 7.9, medium: 11.6, and high: 15.8%) at $1.5{\times}maintenance$. Feeds were distributed at 0900 (30%) and 1700 (70%). Urea diet caused higher heat production and increased vaginal temperature compared to fishmeal and fishmeal-urea mix diets. Time spent standing, skin temperature and respiration rate of sheep fed urea were similar with those of sheep fed fishmeal. Sheep fed diet with low CP level had higher heat production, increased vaginal and skin temperature than sheep fed diet with medium CP content. Sheep on high CP diet produced significantly more heat than sheep fed medium CP diets. Their vaginal temperatures were similar with those of sheep fed medium CP diet but lower than those of sheep fed low CP diet. Respiration rates of sheep and time spent by them for standing on all diets did not differ significantly. These results suggest that urea is inferior protein supplement for thermoregulation of animal at hot environment, as it induced higher heat production than fishmeal and fishmeal-urea mix. Thermoregulatory response on fishmeal-urea mix diet was similar to fishmeal diet. Increasing CP of the diet from low to medium gives advantage for thermoregulation of animal. Increasing CP further to high level was not beneficial as it resulted in the responses of sheep similar to those on low protein diet.

On Cutting Characteristics Change of Low Temperature Cooling Tool -Cutting Characteristics of Cage Motor Rotor- (저온냉각공구의 절삭특성 변화 -모타 회전자의절삭특성-)

  • 김순채
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.37-43
    • /
    • 1995
  • The cutting process of cage motor rotor require high precision and good roughness, the surface roughness fo cutting face is very important factor with effect on the magnetic flux density of cage motor rotor. The paper describes a cause of decrease in the cutting force and roughness on low temperature cooling tool by means of analysis on the mechanism of force system at cutting condition and experimental findings. The main results as compared with the room temperature cutting are as follow : 1) The cutting resistance decreased due to low temperature cooling tool. 2) The surface roughness decreased due to low temperature cooling tool. 3) The low temperature cooling tool effected machinability of the cutting direction in machined surface. 4) The low temperature cooling decreased burr of corner in feed direction.

  • PDF

Improved Resolution of Paper-based Sensor for Proline Detection by Low-temperature Drying of Ninhydrin Solution (닌히드린 용액의 저온 건조에 의한 프롤린 검출을 위한 종이기반 센서의 분해능 개선)

  • Ji-Kwan, Kim;Young-Soo, Choi
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.428-432
    • /
    • 2022
  • In this study, we describe the improvement of the resolution of a paper-based sensor by fabricating a high-concentration ninhydrin part using a low-temperature drying method to detect proline with high resolution. In the conventional paper-based sensor for detecting proline, the ninhydrin part is fabricated at room temperature, and in this process, the ninhydrin solution spreads around the ninhydrin part. Therefore, the concentration of the ninhydrin part becomes lower than that of the applied solution, lowering the resolution of the sensor. The proposed paper-based sensor better improved the sensitivity of the sensor compared to the existing sensor by fabricating a high-concentration ninhydrin part through drying the ninhydrin solution using a low-temperature drying method. Owing to the experiment, the intensity of the green color of the paper-based sensor with the integrated ninhydrin part fabricated at 10 ℃ is approximately 20% lower than the paper-based sensor with an integrated ninhydrin part fabricated at room temperature, indicating better sensor resolution. Therefore, the paper-based sensor with an integrated ninhydrin part fabricated at a high concentration could be useful for diagnosing drought.

Improvement of low temperature thermal stability on PVC (PVC의 저온 열안정성 향상에 관한 연구)

  • Chung, Kwang-Bo;Jeon, In-Ki;Ahn, Sung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.440-450
    • /
    • 2009
  • Metal(Zinc) soap and mixed metal(Zn/Ba) soap were synthesized with good structures and characterized by IR and H-NMR. The H-NMR spectrums of the synthesized soaps were in very good accordance with the structures proposed by earlier workers. The mixed metal soaps with various costabilizers(acid or metal content effect), which added in order to investigate the thermal stabilization effect at low and high temperature, were investigated the thermal stabilization effect. The temperature effect is relation to the metal content effect than acid effect. In case of mixed metal soap, the high thermal stabilization effect improved with increasing Barium content. As the Zinc content increase the low temperature thermal stabilization effect improved, but the high temperature thermal stabilization effect showed an opposite tendency.

The Effects of Various Swirl Flows on Pulverized Petroleum Coke Combustion (미분 석유코크스연소기에서 스월강도변화가 연소과정에 미치는 영향)

  • Cha, Chun Loon;Lee, Ho Yeon;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.297-299
    • /
    • 2014
  • Petroleum coke has high heating value and low price. Due to the steadily increasing demand for heavy oil processing, the production volume of petroleum coke tends to be expanded. The high availability and low price of petroleum coke have been strongly considered as candidate fuel for power generation facilities. However the high carbon content, high sulfur content and nitrogen content of petroleum fuel are known to produce relatively large quantity of CO2, high NOx and SO2 emission. In this work, a series of numerical simulations have been carried out in order to investigate the effects of swirl flow intensity on combustion furnace, which is most important operating condition. Results show that the temperature distribution was spatially uniform at about 1600K but high temperature region are located quite differently depending on swirl number. In addition, numerical temperature data was compared with experimental temperature data and its temperature difference shows less than 10%. On the other hand, discrepancy between numerical and experimental emission data were slightly large with necessities of improved emission model.

  • PDF

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Park, In-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_{x}$) thin films are very good candidate material for uncooked infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_{x}$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than 1000${\AA}$. This paper presents a new fabrication process of $VO_{x}$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}$(100${\AA}$)/V(80${\AA}$)/$VO_{x}$(500${\AA}$) by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than -2%/$^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

Growth Charateristics of Five Microalgal Species Isolated from Jeju Island and Four Microalgal stock Strans in Hatchery

  • Lee, Joon-Baek
    • ALGAE
    • /
    • v.17 no.2
    • /
    • pp.117-125
    • /
    • 2002
  • Five microalgal species isolated from the Jeju coast and four microalgal stock strains in hatchery were cultured in order to investigate their adapation to extreme changes in environmental factors such as salinity, water temperatue, adn nutrients. In case of salinity variation, Nitzschia sp. of Bacillariophyceae, Isochrysis galbana of Haptophyceae and Tetraselmis gracilis of Prasinophyceae showed optimum growth at the low salinity of 20 and 25 psu. Amphora coffeaeformis and Chetoceros simplex of Bacillariophyceae, and Pavlova lutheri of Haptophyceae adapted well at the relatively high salinities of 30 and 35 psu. However Phaeodactylum tricornutum of Bacillariophyceae and Chlorella sp. of Chlorophyceae showed euryhaline property In case of water temperature variation, most of all the species studied wer inhibited at 10℃. C. simplex, Nitzschia sp., p. tricornutum, Chlorella sp. and T. gracilis grew well at above 20℃. A. coffeaeformis, I. galbana and P. lutheri adapted also at the high temperature of 30℃. Each microalgal strain showed different growth rates and its maximum biomass. Generally microalgal populations from the Jeju coast grow well in relatively high salinity and high water temperature. Their growth were inhibited at low water temperature, but not likely affected at low salinity. This study indicates that the microalgal populations could not be affected by abnormally low salinity phenomena, which have happened occasionally around the west Jeju coast in summer and have led macrobenthic animals to mass mortality.

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Choi, In-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_x$) thin films are very good candidate material for uncooled infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_x$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than $1000{\AA}$. This paper presents a new fabrication process of $VO_x$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}(100{\AA})/V(80{\AA})/VO_{x}(500{\AA})$ by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than $-2%/^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

Large Scale Alcohol Fermentation with Cassava Slices at tow Temperature (Cassava 전분의 저온 증자에 의한 공업적 규모의 알코올 발효)

  • Ryu, Beung-Ho;Nam, Ki-Du
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.75-79
    • /
    • 1987
  • The conventional alcohol fermentation method requires a large amount of energy for cooking the starchy raw materials prior to saccharification. The aim of this study was to compare the possibility of large scale alcohol fermentation from cassava slices were compared in low and high temperature cooking systems. The same amount of saccharifying and liquefying enzymes were used for cooking at low and high temperature. At low temperature cooking, conversion of glucose consumed in fermented mash to alcohol was 0.468g alcohol per g glucose of which was higher yield than that obtained at high temperature.

  • PDF

A CLASSIFICATION OF UNIQUELY DIFFERENT TYPES OF NUCLEAR FISSION GAS BEHAVIOR

  • HOFMAN GERARD L.;KIM YEON SOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.299-308
    • /
    • 2005
  • The behavior of fission gas in all major types of nuclear fuel has been reviewed with an emphasis on more recently discovered aspects. It is proposed that the behavior of fission gas can be classified in a number of characteristic types that occur at a high or low operating temperature, and/or at high or low fissile burnup. The crystal structure and microstructure of the various fuels are the determinant factors in the proposed classification scheme. Three types of behavior, characterized by anisotropic $\alpha$-U, high temperature metallic $\gamma$-U, and cubic ceramics, are well-known and have been extensively studied in the literature. Less widely known are two equally typical low temperature kinds: one associated with fission induced grain refinement and the other with fission induced amorphization. Grain refinement is seen in crystalline fuel irradiated to high burnup at low temperatures, whereas breakaway swelling is observed in amorphous fuel containing sufficient excess free-volume. Amorphous fuel, however, shows stable swelling if insufficient excess free-volume is available during irradiation.