A CLASSIFICATION OF UNIQUELY DIFFERENT TYPES OF NUCLEAR FISSION GAS BEHAVIOR

  • HOFMAN GERARD L. (Nuclear Engineering Division, Argonne National Laboratory) ;
  • KIM YEON SOO (Nuclear Engineering Division, Argonne National Laboratory)
  • Published : 2005.08.01

Abstract

The behavior of fission gas in all major types of nuclear fuel has been reviewed with an emphasis on more recently discovered aspects. It is proposed that the behavior of fission gas can be classified in a number of characteristic types that occur at a high or low operating temperature, and/or at high or low fissile burnup. The crystal structure and microstructure of the various fuels are the determinant factors in the proposed classification scheme. Three types of behavior, characterized by anisotropic $\alpha$-U, high temperature metallic $\gamma$-U, and cubic ceramics, are well-known and have been extensively studied in the literature. Less widely known are two equally typical low temperature kinds: one associated with fission induced grain refinement and the other with fission induced amorphization. Grain refinement is seen in crystalline fuel irradiated to high burnup at low temperatures, whereas breakaway swelling is observed in amorphous fuel containing sufficient excess free-volume. Amorphous fuel, however, shows stable swelling if insufficient excess free-volume is available during irradiation.

Keywords

References

  1. W.R. McDonell, 'Void model for cavitational swelling of uranium and other anisotropic metals,' DP-MS-73-11, Savana River Laboratory (1973)
  2. R.M. Berman, 'An x-ray diffraction study of irradiated fluorite-type materials,' WAPD-BT-21, Bettis Technical Review. Reactor Technology (1960)
  3. J.D.B. Lambert and R. Strain, 'Oxide fuels,' Materials Science and Technology, R.W. Cahn, P. Haasen and E.J. Kramer, Eds., Vol. 10A, VCH (1994)
  4. H. Blank, 'Nonoxide Ceramic Nuclear Fuels,' Materials Science and Technology, R.W. Cahn, P. Haasen and E.J. Kramer, Eds., Vol. 10A, VCH (1994)
  5. W. Chubb, V.W. Storhok and D.L. Keller, 'Obervations relating to the mechanisms of swelling and gas release in uranium dioxide at high temperatures,' J. Nucl. Mater., 44, 136 (1972) https://doi.org/10.1016/0022-3115(72)90092-X
  6. R.M. Berman, 'Fission fragment distribution in irradiated $UO_2$,' Nucl. Sci. Eng., 16, 315 (1963) https://doi.org/10.13182/NSE63-A26534
  7. J.D.B. Lambert, 'Irradiation study of $UO_2$ - stainless steel and (Pu,U)$O_2$ - stainless steel cermet fuels in rod and plate geometry,' In High Temp. Nucl. Fuels, A. N. Holden, Ed., P.237, Gordon and Breach (1968)
  8. G.L. Hofman, G.L. Copeland and J.E. Sanecki, 'Microscopic investigation into the irradiation behavior of $U_3O_8-Al$ dispersion fuel,' Nucl. Technol., 72, 338 (1986) https://doi.org/10.13182/NT86-A33772
  9. C.T. Walker and M. Coquerelle, 'Correlation between microstructure and fission gas release in high burnup $UO_2$ and MOX fuel,' Inter'l Topical Mtg. LWR Fuel Performance, Fuel for the 90s, p.506, Avignon, France, April 21-24, 1991, Amer. Nucl. Soc. (1991)
  10. H. Stehle, 'Performance of oxide nuclear fuel in water-cooled power reactors,' J. Nucl. Mater., 153, 3 (1988) https://doi.org/10.1016/0022-3115(88)90187-0
  11. M.E. Cunningham, M.D. Freshley and D.D. Lanning, 'Development and characteristics ofthe rim region in high burnup $UO_2$ fuel pellets,' J. Nucl. Mater., 188, 19 (1992) https://doi.org/10.1016/0022-3115(92)90449-U
  12. L.E. Thomas, C.E. Beyer and L.A. Charlot, 'Microstructural analysis of LWR spent fuels at high burnup,' J. Nucl. Mater., 188, 80 (1992) https://doi.org/10.1016/0022-3115(92)90457-V
  13. G.L. Hofman, M.K. Meyer, J.L. Snelgrove et al., 'Initial assessment of radiation behavior of very-high density low-enriched uranium fuels,' The 22nd International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR), Budapest, Hungary, October 3-8, 1999
  14. S.J. Thompson and P.E.J. Flewitt, 'The defect structure and superconducting transition of cold-worked niobium,' J. Less-Common Metals, 40(3), 269 (1975) https://doi.org/10.1016/0022-5088(75)90071-5
  15. N. Hansen, 'Low energy dislocation structures due to unidirectional deformation at low temperatures,' Mater. Sci. Eng., 81, 141 (1986) https://doi.org/10.1016/0025-5416(86)90258-2
  16. C.L. Trybus and W.A. Spitzig, 'Chracterization of the strength and microstructural evolution of a heavily cold rolled Cu-20% Nb composite,' Acta Metall., 37(7), 1971 (1989) https://doi.org/10.1016/0001-6160(89)90081-3
  17. C.L. Trybus, L.S. Chumbley, W.A. Spitzig and J.D. Verhoeven, 'Problems in evaluating the dislocation densities in heavily deformed Cu-Nb composites,' Ultamicroscopy, 30, 315 (1989) https://doi.org/10.1016/0304-3991(89)90060-0
  18. W.A. Spitzig, C.L. Trybus and F.C. Laabs, 'Structure properties of heavily cold-drawn niobium,' Mater. Sci. Eng., A145, 179 (1991) https://doi.org/10.1016/0921-5093(91)90247-K
  19. J. Rest and G.L. Hofman, 'Kinetics of recrystallization and fission-gas-induced swelling in high burnup $UO_2$ and $U_3Si_2$ nuclear fuels,' Fundamental Aspects of Inert Gases in Solids, S.E. Donnelly and J.H. Evans, Eds., p.443, Plenum Press (1991)
  20. J. Rest and G.L. Hofman, 'Dynamics of irradiation-induced grain subdivision and swelling in $U_3Si_2$ and $UO_2$ fuels,' J. Nucl. Mater., 210, 187 (1994) https://doi.org/10.1016/0022-3115(94)90237-2
  21. J. Rest and G.L. Hofman, 'An alternative explanation for evidence that xenon depletion, pore formation, and grain subdivision begin at different local burnups,' J. Nucl. Mater., 277, 231 (2000) https://doi.org/10.1016/S0022-3115(99)00201-9
  22. I.L.F. Ray, Hj. Matzke, H.A. Thiele and M. Kinoshita, 'An electron microscopy study of the RIM structure of a $UO_2$, fuel with a high burnup of 7.9% FIMA,' J. Nucl. Mater., 245, 115 (1997) https://doi.org/10.1016/S0022-3115(97)00015-9
  23. T. Sonoda, M. Kinoshita, I.L.F. Ray et al., 'Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burnup $UO_2$ disk fuel,' Nucl. Instr. Meth. Phys. Res., B191, 622 (2002) https://doi.org/10.1016/S0168-583X(02)00622-5
  24. K. Nogita and K. Une, 'Radiation-induced microstructural change in high burnup $UO_2$ fuel pellets,' Nucl. Instr. Meth. Phys. Res., B91, 301 (1994) https://doi.org/10.1016/0168-583X(94)96235-9
  25. A.D. Whapham and B.E. Sheldon, 'Radiation damage in uranium dioxide,' Phil. Mag., 10, 1179 (1965) https://doi.org/10.1080/14786436508228669
  26. K. Nogita and K. Une, 'Irradiation-induced recrystallization in high burnup $UO_2$ fuel,' J. Nucl. Mater., 226, 302 (1995) https://doi.org/10.1016/0022-3115(95)00123-9
  27. I.L.F. Ray, H. Thiele and Hj. Matzke, 'Transmission electron microscopy study of fission product behavior in high burnup $UO_2$,' J. Nucl. Mater., 188, 90 (1992) https://doi.org/10.1016/0022-3115(92)90458-W
  28. J. Spino and D. Papaioannou, 'Lattice parameter changes associated with the rim-structure formation in high burnup $UO_2$ fuels by micro X-ray diffraction,' J. Nucl. Mater., 281(2-3), 146 (2000) https://doi.org/10.1016/S0022-3115(00)00236-1
  29. J. Spino, J. Cobos-Sabate and F. Rousseay, 'Room-temperature microindentation behavior of LWR-fuels, part 1: fuel microhardness,' J. Nucl. Mater., 322, 204 (2003) https://doi.org/10.1016/S0022-3115(03)00328-3
  30. A.D. Whapham and B.E. Sheldon, 'Transmission electron microscope study of irradiation effects in sintered uranium dioxide,' J. Nucl. Mater., 10, 157 (1963) https://doi.org/10.1016/0022-3115(63)90083-7
  31. B. Bethune, 'Transmission electron microscopy of U3Si-effect of irradiation,' J. Nucl. Mater., 40, 205 (1971) https://doi.org/10.1016/0022-3115(71)90134-6
  32. Mme J. Bloch, 'Effet de l'irradiation par les neutrons sur les alliages uranium-fer a faible teneur en fer,' J. Nucl. Mater., 6(2), 203 (1962) https://doi.org/10.1016/0022-3115(62)90271-4
  33. S. Klaumunzer, 'Ion-beam-induced plastic deformation: A universal phenomenon in glasses,' Rad. Effect Defects Solid, 110, 79 (1989) https://doi.org/10.1080/10420158908214166
  34. G.S. Grest and M.H. Cohen, 'Liquids, glasses and the glass transition: A free-volume approach,' Advances in Chemical Physics, I. Prigogine and S.A, Price, Eds., John Wiley and Sons, p.469, New York (1981)
  35. T. Komatsu, K. Matusita and R. Yokota, 'Volume changes during the structural relaxation and crystallization in Fe-Ni based metallic glasses,' J. Non-crystalline Solids, 69, 347 (1985) https://doi.org/10.1016/0022-3093(85)90036-5
  36. T. Komatsu, K. Matusita and R. Yokota, 'Quenched-in excess volume and structural relaxation in Fe-Ni based metallic glasses,' J. Non-crystalline Solids, 85, 358 (1986) https://doi.org/10.1016/0022-3093(86)90008-6
  37. R.C. Birtcher, J.W. Richardson and M.H. Mueller, 'Amorphization of U3Si2 by ion or neutron irradiation,' J. Nucl. Mater., 230, 158 (1996) https://doi.org/10.1016/0022-3115(96)00160-2
  38. S. Klaumunzer, M. Hou, G. Schumacher and C. Li, 'Ionbeam induced plastic deformation of amorphous materials,' Proc. Materials Research Society Meeting, Mar. 1987, Los Angeles, USA (1987)