DOI QR코드

DOI QR Code

Improved Resolution of Paper-based Sensor for Proline Detection by Low-temperature Drying of Ninhydrin Solution

닌히드린 용액의 저온 건조에 의한 프롤린 검출을 위한 종이기반 센서의 분해능 개선

  • Ji-Kwan, Kim (Department of Mechanical Convergence Engineering, Gwangju Unversity) ;
  • Young-Soo, Choi (Department of Mechanical Convergence Engineering, Gwangju Unversity)
  • 김지관 (광주대학교 융합기계공학과) ;
  • 최영수 (광주대학교 융합기계공학과)
  • Received : 2022.10.28
  • Accepted : 2022.11.10
  • Published : 2022.11.30

Abstract

In this study, we describe the improvement of the resolution of a paper-based sensor by fabricating a high-concentration ninhydrin part using a low-temperature drying method to detect proline with high resolution. In the conventional paper-based sensor for detecting proline, the ninhydrin part is fabricated at room temperature, and in this process, the ninhydrin solution spreads around the ninhydrin part. Therefore, the concentration of the ninhydrin part becomes lower than that of the applied solution, lowering the resolution of the sensor. The proposed paper-based sensor better improved the sensitivity of the sensor compared to the existing sensor by fabricating a high-concentration ninhydrin part through drying the ninhydrin solution using a low-temperature drying method. Owing to the experiment, the intensity of the green color of the paper-based sensor with the integrated ninhydrin part fabricated at 10 ℃ is approximately 20% lower than the paper-based sensor with an integrated ninhydrin part fabricated at room temperature, indicating better sensor resolution. Therefore, the paper-based sensor with an integrated ninhydrin part fabricated at a high concentration could be useful for diagnosing drought.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea(NRF)(2021R1F1A1063713).

References

  1. L. Szabados and A. Savoure, "Proline: a multifunctional amino acid", Trends plant Sci., Vol. 15, No. 2, pp. 89-97, 2010. https://doi.org/10.1016/j.tplants.2009.11.009
  2. P. B. K. Kishor, P. H. Kumari, M. S. L. Sunita, and N. Sreenivasulu, "Role of proline in cell wall synthesis and plant development and its implications in plant ontogecy", Front Plant Sci., Vol. 6, p. 00544, 2015.
  3. S. Hayat, Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel, and A. Ahmad, "Role of proline under changing environments environments", Plant Signal Behav, Vol. 7, No. 11, pp. 1456-1466, 2012. https://doi.org/10.4161/psb.21949
  4. P. B. K. Kishor, S. Sangam, R. N. Amrutha, P. S. Laxmi, K. R. Naidu, K. R. S. S. Rao, S. Rao, K. J. Reddy, P. Theriappan, and N. Sreenivasulu, "Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance", Curr. Sci., Vol. 88, No. 3, pp. 424-438, 2005.
  5. H. M. Akram, A. Ali, A. Sattar, H. S. U. Rehman, and A. Bibi, "Impact of water deficit stress on various physiological and agronomic traits of three basmati rice (Oryza sativa L.) Cultivars", J. Anim. Plant. Sci., Vol. 23, No. 5, pp. 1415-1423, 2013.
  6. P. Thakur, S. Kumar, J. A. Malik, J. D. Berger, and H. Nayyar, "Cold stress effects on reproductive development in grain crops: An overview", Environ. Exp. Bot., Vol. 67, No. 3, pp. 429-443, 2010. https://doi.org/10.1016/j.envexpbot.2009.09.004
  7. S. I. Zandalinas, R. Mittler, D. Balfagon, V. Arbona, and A. Gomez-Cadenas, "Plant adaptations to the combination of drought and high temperatures", Physiol. Plantarum., Vol. 162, No. 1, pp. 2-12, 2018. https://doi.org/10.1111/ppl.12540
  8. R. Mittler and E. Blumwald, "Genetic engineering for modern agriculture: challenges and perspectives", Annu. Rev. Plant. Biol., Vol. 61, No. 1, pp. 443-462, 2010. https://doi.org/10.1146/annurev-arplant-042809-112116
  9. J. S. Boyer, "Plant productivity and environment", Science, Vol. 218, No. 4571, pp. 443-448, 1982. https://doi.org/10.1126/science.218.4571.443
  10. E. Abraham, C. Hourton-Cabassa, L. Erdei, and L. Szabados, "Methods for determination of proline in plants", Methods Mol. Biol., Vol. 639, pp. 317-331, 2010. https://doi.org/10.1007/978-1-60761-702-0_20
  11. G. Noctor and C. H. Foyer, "Simultaneous measurement of foliar glutathione, gamma-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione", Anal. Biochem., Vol. 264, No. 1, pp. 98-110, 1998. https://doi.org/10.1006/abio.1998.2794
  12. I. Smith, "Colour reactions on paper chromatograms by a dipping technique", Nat., Vol. 171, pp. 43-44, 1953. https://doi.org/10.1038/171043a0
  13. F. P. Chinard, "Photometric estimation of proline and ornithine", J. Biol. Chem., Vol. 199, No. 1, pp. 91-95, 1952. https://doi.org/10.1016/S0021-9258(18)44814-4
  14. Y. S. Choi, M. R. Lee, C. S. Kim, and K. H. Lee, "Detection of proline using a novel paper-based analytical device for on-site diagnosis of drought stress in plants", Rev. Sci. Instrum., Vol. 90, No. 4, p. 045002, 2019.
  15. Y. S. Choi, M. K. Im, M. R. Lee, C. S. Kim, and K. H. Lee, "Highly sensitive enclosed multilayer paper-based microfluidic sensor for quantifying proline in plants", Analytica Chimica Acta, Vol. 1105, pp.169-177, 2020. https://doi.org/10.1016/j.aca.2020.01.038