• Title/Summary/Keyword: loss functions

Search Result 800, Processing Time 0.137 seconds

Correlation of Seismic Loss Functions Based on Stories and Core Locations in Vertical-Irregular Structures (연층을 갖는 수직 비정형 건축물의 층수 및 코어 위치에 따른 지진손실함수 상관관계 분석)

  • Hahn, SangJin;Shim, JungEun;Jeong, MinJae;Cho, JaeHyun;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.149-158
    • /
    • 2024
  • Piloti-type structures with vertical irregularity are vulnerable to earthquakes due to the soft structure of the first story. Structural characteristics of buildings can significantly affect the seismic loss function, calculated based on seismic fragility, and therefore need to be considered. This study investigated the effects of the number of stories and core locations on the seismic loss function of piloti-type buildings in Korea. Twelve analytical models were developed considering two variations: three stories (4-story, 5-story, and 6-story) and four core locations (center core, x-eccentric core, y-eccentric core, and xy-eccentric core). The interstory drift ratio and peak floor acceleration were assessed through incremental dynamic analysis using 44 earthquake records, and seismic fragility was derived. Seismic loss functions were calculated and compared using the derived seismic fragility and repair cost ratio of each component. The results indicate that the seismic loss function increases with more stories and when the core is eccentrically located in the piloti-type structure model. Therefore, the uncertainty due to the number of stories and core location should be considered when deriving the seismic loss function of piloti-type structures.

On Estimating Burr Type XII Parameter Based on General Type II Progressive Censoring

  • Kim Chan-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.89-99
    • /
    • 2006
  • This article deals with the problem of estimating parameters of Burr Type XII distribution, on the basis of a general progressive Type II censored sample using Bayesian viewpoints. The maximum likelihood estimator does not admit closed form but explicit sharp lower and upper bounds are provided. Assuming squared error loss and linex loss functions, Bayes estimators of the parameter k, the reliability function, and the failure rate function are obtained in closed form. Finally, a simulation study is also included.

Simultaneous Optimization Using Loss Functions in Multiple Response Robust Designs

  • Kwon, Yong Man
    • Journal of Integrative Natural Science
    • /
    • v.14 no.3
    • /
    • pp.73-77
    • /
    • 2021
  • Robust design is an approach to reduce the performance variation of mutiple responses in products and processes. In fact, in many experimental designs require the simultaneous optimization of multiple responses. In this paper, we propose how to simultaneously optimize multiple responses for robust design when data are collected from a combined array. The proposed method is based on the quadratic loss function. An example is illustrated to show the proposed method.

A Study on Process Capability Index using Reflected Normal Loss Function (역정규 손실함수를 이용한 공정능력지수에 관한 연구)

  • 정영배;문혜진
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.3
    • /
    • pp.66-78
    • /
    • 2002
  • Process capability indices are being used as indicators for measurements of process capability for SPC of quality assurance system in industries. In view of the enhancement of customer satisfaction, process capability indices in which loss functions are used to deal with the economic loss In the processes deviated from the target, are in an adequate representation of the customer's perception of quality In this connection, the loss function has become increasingly important in quality assurance. Taguchi uses a modified form of the quadratic loss function to demonstrate the need to consider the proximity to the target while assessing its quality. But this traditional quadratic loss function is inadequate to assessing the quality and quality improvement since different processes have different sets of economic consequences on the manufacturing, Thereby, a flexible approach to the development of the loss function needs to be desired. In this paper, we introduce an easily understood loss function, based on reflection of probability density function of the normal distribution. That is, the Reflected Normal Loss function can be adapted to an asymmetric loss as well as to a symmetric loss around the target. We propose that, instead of the process variation, a new capability index, CpI using the Reflected Normal Loss Function that can accurately reflect the losses associated with the process and a new capability index CpI Is compared with the classical indices as $C_{p}$ , $C_{pk}$, $C_{pm}$ and $C_{pm}$ $^{+}$.>.+/./.

Decision of Producer's Specification Limits Considering Types of Loss Function (손실함수의 형태를 고려한 생산자 규격한계의 결정)

  • Kim, Dong-Hyuk;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.145-153
    • /
    • 2018
  • Taguchi regarded the concept of quality as 'total loss to society due to fluctuations in quality characteristics from the time of supplied to the customer.' The loss function is a representative tool that can quantitatively convert the loss that occurs due to the deviation of the quality characteristic value from the target value. This has been utilized in various studies with the advantage that it can change the social loss caused by fluctuation of quality characteristics to economic cost. The loss function has also been used extensively in the study of producer specification limits. However, in previous studies, only the second order loss function of Taguchi is used. Therefore, various types of losses that can occur in the process can't be considered. In this study, we divide the types of losses that can occur in the process considering the first and second loss functions and the Spiring's reflected normal loss function, and perform total inspection before delivering the customer to determine the optimal producer specification limit that minimizes the total cost. Also, we will divide the quality policy for the products beyond the specification limits into two. In addition, we will show the illustration of expected loss cost change of each model according to the change of major condition such as customer specifications and maximum loss cost.

Face Recognition in Visual and Infra-Red Complex Images (가시광-근적외선 혼합 영상에서의 얼굴인식에 관한 연구)

  • Kim, Kwang-Ju;Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.844-851
    • /
    • 2019
  • In this paper, we propose a loss function in CNN that introduces inter-class amplitudes to increase inter-class loss and reduce intra-class loss to increase of face recognition performance. This loss function increases the distance between the classes and decreases the distance in the class, thereby improving the performance of the face recognition finally. It is confirmed that the accuracy of face recognition for visible light image of proposed loss function is 99.62%, which is better than other loss functions. We also applied it to face recognition of visible and near-infrared complex images to obtain satisfactory results of 99.76%.

Comparison of Deep Learning Loss Function Performance for Medical Video Biomarker Extraction (의료 영상 바이오마커 추출을 위한 딥러닝 손실함수 성능 비교)

  • Seo, Jin-beom;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.72-74
    • /
    • 2021
  • The deep learning process currently utilized in various fields consists of data preparation, data preprocessing, model generation, model learning, and model evaluation. In the process of model learning, the loss function compares the value of the model with the actual value and outputs the difference. In this paper, we analyze various loss functions used in the deep learning model for biomarker extraction, which measure the degree of loss of neural network output values, and try to find the best loss function through experiments.

  • PDF

Development of a Postural Evaluation Function for Effective Use of an Ergonomic Human Model (인체모형의 효과적 활용을 위한 자세 함수의 개발)

  • Park, Sungjoon;Kim, Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • The ergonomic human model can be considered as a tool for the evaluation of ergonomic factors in vehicle design process. The proper anthropometric data on driver's postures are needed in order to apply a human model to vehicle design. Although studies on driver's posture have been carried out for the last few decades, there are still some problems for the posture data to be applied directly to the human model due to the lack of fitness because such studies were not carried out under the conditions for the human model application. In the traditional researches, the joint angles were evaluated by the categorized data, which are not appropriate for the human model application because it is so extensive that it can not explain the posture evaluation data in detail. And the human models require whole-body posture evaluation data rather than joint evaluation data. In this study a postural evaluation function was developed not by category data but by the concept of the loss function in quality engineering. The loss was defined as the discomfort in driver's posture and measured by the magnitude estimation technique in the experiment using a seating buck. Four loss functions for the each joint - knee, hip, shoulder, and elbow were developed and a whole-body postural evaluation function was constructed by the regression analysis using these loss functions as independent factors. The developed postural evaluation function shows a good prediction power for the driver's posture discomfort in validation test. It is expected that the driver's postural evaluation function based on the loss function can be used in the human model application to the vehicle design process.

A study on loss combination in time and frequency for effective speech enhancement based on complex-valued spectrum (효과적인 복소 스펙트럼 기반 음성 향상을 위한 시간과 주파수 영역 손실함수 조합에 관한 연구)

  • Jung, Jaehee;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.38-44
    • /
    • 2022
  • Speech enhancement is performed to improve intelligibility and quality of the noise-corrupted speech. In this paper, speech enhancement performance was compared using different loss functions in time and frequency domains. This study proposes a combination of loss functions to utilize advantage of each domain by considering both the details of spectrum and the speech waveform. In our study, Scale Invariant-Source to Noise Ratio (SI-SNR) is used for the time domain loss function, and Mean Squared Error (MSE) is used for the frequency domain, which is calculated over the complex-valued spectrum and magnitude spectrum. The phase loss is obtained using the sin function. Speech enhancement result is evaluated using Source-to-Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligibility (STOI). In order to confirm the result of speech enhancement, resulting spectrograms are also compared. The experimental results over the TIMIT database show the highest performance when using combination of SI-SNR and magnitude loss functions.