• Title/Summary/Keyword: longitudinal direction

Search Result 819, Processing Time 0.029 seconds

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

Study on the Shape of a Longitudinal Joint of the Slab-type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량의 종방향 연결부 형상 결정에 관한 연구)

  • Lee, Sang Yoon;Song, Jae Joon;Kim, Hyeong Yeol;Lee, Young Ho;Lee, Jung Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.98-111
    • /
    • 2012
  • In this study, a longitudinal joint connection was proposed for the short-span slab-type precast modular bridges with rapid construction. The slab-type modular bridge consists of a number of precast slab modules and has the joint connection between the modules in the longitudinal direction of the bridge. The finite element based parameter analysis and the push-out test were conducted to design the shape and the dimensions of the longitudinal joint connection. Number of shear keys within the joint, height and depth of the shear key, tooth angle, and the spacing were considered as the design parameters. Using the local cracking load obtained from the analytical and experimental results, an efficiency factor was proposed to evaluate the effectiveness of the longitudinal joint connection. The dimensions of shear key were determined by comparing the efficiency factors.

Effect of Temperature on the Charpy Impact and CTOD Values of Type 304 Stainless Steel Pipeline for LNG Transmission

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Kho, Young-Tai
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1064-1071
    • /
    • 2002
  • Stainless steel pipe of type 304 the with a wall thickness of 26.9 mm and the outer diameter 406.4 mm is welded by manual arc welding process. Mechanical properties and fracture toughness of type 304 stainless steel are investigated in the temperature ranging from room temperature to -162$^{\circ}C$ The results obtained are summarized as follows. The tensile strength noticeably increases as the temperature becomes lower while the yield strength is relatively insensitive to temperature. The Charpy impact energy and CTOD values become higher in the case that crack propagation direction is aligned to the transverse axis upon the rolling direction than longitudinal direction. The drop of fracture toughness is associated with the noticeable diminution of plastic component as temperature seduces from room temperature to -162$^{\circ}C$ .

Analysis of Filament Wound Pressure Tank Considering Winding Angle Variation in Thickness Direction (두께 방향의 와인딩 각도 변화를 고려한 필라멘트 와인딩 된 압력탱크의 해석)

  • 김철웅;박재성;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.211-214
    • /
    • 2000
  • Filament wound pressure vessels have been studied for the efficient design tool to consider the variation of fiber angles through-the thickness direction. Filament winding patterns were simulated from semi-geodesic fiber path equation to calculate fiber path on arbitrary surface. Finite element analyses were performed considering fiber angle variation in longitudinal and thickness directions by ABAQUS. For the finite element modeling of the pressure tank, the 3-dimensional layered solid element was utilized. From the stress results of pressure tanks, maximum stress criterion in transverse direction was applied to modify material properties for failed region. In the end of each load increment, resultant layer stresses were compared with a failure criterion and properties were reduced to 1/10 for a failed layer. Results of progressive failure analysis were compared with two experimental data.

  • PDF

Strength Characteristics of Reduced Activation Ferritic Steel for Fusion Blanket by TIG Welding (핵융합로 블랭킷용 저방사화 철강재료 TIG 용접부의 강도특성)

  • ;;;A. Kohyama
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.87-92
    • /
    • 2003
  • JLF-1 steel (Fe-9Cr-2W-V-Ta), reduced activation ferritic steel, is one of the promising candidate materials for fusion reactor applications. Tensile properties of JLF-1 base metal and its TIG weldments has been investigated at the room temperature, $400^{\circ}C$ and $600^{\circ}C$. The tensile strength of base metal (JLF-1) showed the level between those of weld metal and the Heat Affected Zone (HAZ). When the test temperature was increased from room temperature to high temperature ($400^{\circ}C$ and $600^{\circ}C$), both strength and ductility decreased or base metal, weld metal and the HAZ. The longitudinal specimens of base metal represented similar strength and ductility at room temperature and high temperature, compared to those of transverse specimens. Little anisotropy for the rolling direction was observed in the base metal of JLF-1 steel.

A Study on the Location Characteristics in Rural Area of Valley Category ('곡'(谷)계 지명 농촌마을의 입지 특성에 관한 연구 -충청북도 괴산군을 대상으로-)

  • Roh, Seon-Hwa;Moon, Byung-Sun;Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.9 no.2
    • /
    • pp.103-111
    • /
    • 2007
  • After researching 154 rural areas named 'valley' in Goesan County, Chungbuk Province, they are classified by 2 two classes. Firstly, villages located on the crossways valley are 109 of 154, they are located on the valley which is at right angles with a direction of light of a mountain range. A closed valley location is placed in the deep valley against a background mountain range. It is divided with closed large valley and small valley. Secondly, an open valley location style is 45 of 154. It means the villages are paralleled with a direction of mountain and located with same direction of entrance.

  • PDF

The Influence on self Field Losses in 2nd Stage Superconducting Cable for Different Twist Direction of Filaments (2중 연선 초전도 케이블에서 소선내의 필라멘트의 트위스트 방향이 자기자계 손실에 미치는 영향)

  • 이지광;차귀수;정희원
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.38-41
    • /
    • 1999
  • Strands composing multistage superconducting cables for AC power applications have twisted structure in each stage for lower AC loss and higher stability. So, when transport currents flow in a cable, each strand is exposed to longitudinal and azimuthal magnetic fields produced by transport current flowing in strand itself and Iongitudinal and transverse magnetic fields by transport current flowing in twisted cable. In this paper. we study the influence on self field lesses generated in second stage superconducting cable for different twist direction of filaments in a strand considering twist of strands in cables.

  • PDF

Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer

  • Fatemeh Ramezani;Mohammad Zamani Nejad
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.139-151
    • /
    • 2024
  • In this research, a semi-analytical solution is presented for computing mechanical displacements and thermal stresses in rotating thick cylindrical pressure vessels made of functionally graded material (FGM). The modulus of elasticity, linear thermal expansion coefficient, and density of the cylinder are assumed to change along the axial direction as a power-law function. It is also assumed that Poisson's ratio and thermal conductivity are constant. This cylinder was subjected to non-uniform internal pressure and thermal loading. Thermal loading varies in two directions. The governing equations are derived by the first-order shear deformation theory (FSDT). Using the multilayer method, a functionally graded (FG) cylinder with variable thickness is divided into n homogenous disks, and n sets of differential equations are obtained. Applying the boundary conditions and continuity conditions between the layers, the solution of this set of equations is obtained. To the best of the researchers' knowledge, in the literature, there is no study carried out bi-directional thermoelastic analysis of clamped-clamped rotating FGM thick-walled cylindrical pressure vessels under variable pressure in the longitudinal direction.

Experimental study on the influence of the ground surface slope on the longitudinal load transfer in shallow tunnel (얕은 터널에서 지표경사가 종방향 하중전이에 미치는 영향에 대한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.887-903
    • /
    • 2017
  • Lots of shallow tunnels are constructed in the mountainous areas where the stress distribution in the ground around tunnel is not simple, also the impact of stress conditions on the longitudinal load transfer characteristics is unclear. The tunnel construction methods and the ground conditions would also affect the longitudinal load transfer characteristics which would be dependant on the displacement patterns of tunnel face. Therefore, in this study, the slope of the ground surface was varied in $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and the longitudinal load transfer depended on the deformation conditions of tunnelface (that were maximum deformation on the top, constant deformation, and maximum deformation on the bottom), and the stress distribution at tunnelface. As results, when the tunnelface deformed, the earth presure on the tunnelface decreased and the load at tunnel crown increased. The load transferred on the crown was influenced by the earth presure on tunnel face. Smaller load would be transfered to the wide areas when the slope of ground surface decreased. When the slope of ground surface became larger, the longitudinal load transfer would be smaller and would be concentrated on tunnelface, In addition, the shape of the transferred load distribution in the longitudinal direction was dependant on the deformation shape of tunnelface. The deformation shape of tunnelface and stress conditions in longitudinal sections would affect the shape and the magnitude of the load transfer in the longitudinal directions.

Finite element analysis of the artery and PTFE end-to-side anastomosis with $45^{\circ}$ anastomotic angle. ($45^{\circ}$ 문합각을 가진 동맥과 PTFE 단측 문합의 유한요소해석.)

  • Han, Geun-Jo;Kim, Hyung-Tae;Shin, Jung-Woog;Kim, Young-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.104-108
    • /
    • 1995
  • Von Mises stress and compliance distribution was evaluated using a finite element analysis on the anastomosis of an artery with length of 20mm, inner diameter of 4mm, thickness of 0.5mm and a PTFE graft with length of 5.7mm, Inner diameter of 2mm. thickness of 0.2mm. When anastomotic angle was taken as $45^{\circ}$ and inner pressure of $1330\;dyne/mm^2$ was applied inside the 2 conduits. From the analysis results were obtained as follows. (1)Artery diameter increased in both horizontal x and vertical y directions and the magnitude of that in x direction was bigger than in y direction. (2) The compliance was maximum on the anastomosis. especially on that with acute angle. This reduced approaching to the right or left end. (3) The equivalent stress was maximum on top in the y direction and winimum on the nodes around $110^{\circ}$ in circumferential direction from the top. (4) The equivalent stress was maximum in the vicinity of anastomosis with acute angle along the longitudinal direction of the artery. This trend was also observed along the PTFE graft.

  • PDF