• Title/Summary/Keyword: long-term tide-gauge data

Search Result 9, Processing Time 0.02 seconds

Relative Sea-level Change Around the Korean Peninsula

  • Jeon, Dong-Chull
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.373-378
    • /
    • 2008
  • Long-term tide-gauge data from around the Korean Peninsula were reanalyzed. Both the coastal water and the open sea surrounding the Korean Peninsula appeared to have been influenced by global warming. The long-term change in relative sea levels obtained from tidal stations showed a general rising trend, especially near Jeju Island. It is proposed that global warming may have caused shifting of the path of the Kuroshio branch (Tsushima Warm Current) toward Jeju Island, causing a persistent increase in the water levels along the coast of the island over the last few decades.

Long-term Change in Sea Level along the Eastern Coastal Waters of Korea using Tide Gauge, Water Temperature and Salinity (조위 및 수온, 염분 데이터를 이용한 동해 연안의 해수면 변화)

  • Park, Se-Young;Lee, Chung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.801-806
    • /
    • 2014
  • Long-term change in sea level along the eastern coast of Korea was illustrated using four tide-gauge station (Pohang, Mukho, Sokcho, Ulleung) data, water temperature and salinity. Seasonal variation in the sea level change was dominant. The sea level change by steric height derived from water temperature and salinity was relatively lower than that measured from the tide-gauge stations. Sea level rising rate per year by steric height increased with latitude. The effect of salinity(water temperature) on the sea level change is greater in winter(in summer).

Sea-Level Trend at the Korean Coast

  • Cho, Kwangwoo
    • Journal of Environmental Science International
    • /
    • v.11 no.11
    • /
    • pp.1141-1147
    • /
    • 2002
  • Based on the tide gauge data from the Permanent Service for Meau Sea Level (PSMSL) collected at 23 locations in the Korean coast, the long-term sea-level trend was computed using a simple linear regression fit over the recorded length of the monthly mean sea-level data. The computed sea-level trend was also corrected for the vertical land movement due to post glacial rebound(PGR) using the ICE-4G(VM2) model output. It was found that the PGR-corrected sea-level trend near Korea was 2.310 $\pm$ 2.220 mm/yr, which is higher than the global average at 1.0∼2.0mm/yr, as assessed by the Intergovernmental Panel on Climate Change(IPCC). The regional distribution of the long-term sea-level trend near Korea revealed that the South Sea had the largest sea-level rise followed by the West Sea and East Sea, respectively, supporting the results of the previous study by Seo et al. However, due to the relatively short record period and large spatial variability, the sea-level trend from the tide gauge data for the Korean coast could be biased with a steric sea-level rise by the global warming during the 20th century.

Sea Level Variations in the East Asian Marginal Seas by Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계자료를 이용한 동북아시아 연변해역의 해수면 변화 연구)

  • Yoon, Hong-Joo;Kim, Sangwoo;Lee, Moon-Ock;Park, Il-Heum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.300-303
    • /
    • 2001
  • The first 7 years of altimeter data from the TOPEX/POSEIDON (T/P) were analyzed to study the surface circulation and its variability in the East Asian Marginal Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. T/P data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and S2. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific (NP) was higher than Yellow Sea (YS) and East Sea (ES). The T/P sea level valibility, with strong eddy and meandaring, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extention area.

  • PDF

Sea surface circulation and ie variability in the North East Asian Seas by remote sensing (Topex/Poseidon)

  • Yoon, Hong-Joo;Yoon, Yong-Hoon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.108-111
    • /
    • 2003
  • Altimeter data from the Topex/Poseidon (T/P) were analyzed to study the sea surface circulation and its variability in the North East Asian Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. Tf data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and S2. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific (NP) was higher than Yellow Sea (YS) and East Sea (ES). The T/P sea level variability, with strong eddy and meandering, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extension area.

  • PDF

VULNERABILITY OF KOREAN COAST TO THE SEA-LEVEL RISE DUE TO $21^{ST}$ GLOBAL WARMING

  • Cho Kwangwoo;Maeng Jun Ho;Yun Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.219-225
    • /
    • 2003
  • The present study intends to assess the long-term steric sea-level change and its prediction, and potential impacts to the sea-level rise due to the 21st global warming in the coastal zone of the Korea in which much socioeconomic activities have been occurred. The analysis of the 23 tide-gauge data near Korea reveals the overall mean sea-level trend of 2.31 mm/yr.In the satellite altimeter data (Topex/Poseidon and ERS), the sea-level trend in the East Sea is 4.6mm/yr. Both are larger than those of the global average value. However, it is quite questionable that the sea-level trends with the tide-gauge data on the neighboring seas of Korea relate to global warming because of the relatively short observation period and large spatial variability. It is also not clear whether the high trend of altimeter data in the East Sea is related to the acceleration of sea level rise in the Sea, short response time of the Sea, natural variability such as decadal variability, short duration of the altimeter. The coastal zone of Korea appears to be quite vulnerable to the 21st sea level rise such that for the I-m sea level rise with high tide and storm surge, the inundation area is 2,643 km2, which is about $1.2\%$ of total area and the population in the risk areas of inundation is 1.255 million, about $2.6\%$ of total population. The coastal zone west of Korea is appeared to be the most vulnerable area compared to the east and south. In the west of the Korea, the North Korea appears to be more vulnerable than South Korea. In order to cope with the future possible impact of sea-level rise to the coastal zone of Korea effectively, it is essential to improve scientific information in the sea-level rise trend, regional prediction, and vulnerability assessment near Korean coast.

  • PDF

Sea Level Variabilities in the East Asian Marginal Seas by Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계자료를 이용한 동북아시아 연변해역의 해수면 변화 연구)

  • Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1190-1194
    • /
    • 2001
  • The first 7 years of altimeter data from the TOPEX/POSEIDON(T/P) were analyzed to study the surface circulation and its variability in the East Asian Marginal Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. T/]P data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and 52. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific(NP) was higher than Yellow Sea(YS) and East Sea(ES). The T/P sea level variability, with strong eddy and meandering, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extension area.

  • PDF

A Study on The Effects of Long-Term Tidal Constituents on Surge Forecasting Along The Coasts of Korean Peninsula (한국 연안의 장주기 조석성분이 총 수위 예측에 미치는 영향에 관한 연구)

  • Jiha, Kim;Pil-Hun, Chang;Hyun-Suk, Kang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.222-232
    • /
    • 2022
  • In this study we investigated the characteristics of long-term tidal constituents based on 30 tidal gauge data along the coasts of Korea and its the effects on total water level (TWL) forecasts. The results show that the solar annual (Sa) and semiannual (Ssa) tides were dominant among long-term tidal constituents, and they are relatively large in western coast of Korea peninsula. To investigate the effect of long-term tidal constituents on TWL forecasts, we produced predicted tides in 2021 with and without long-term tidal constituents. The TWL forecasts with and without long-term tidal constituents are then calculated by adding surge forecasts into predicted tides. Comparing with the TWL without long-term tidal constituents, the results with long-term tidal constituents reveals small bias in summer and relatively large negative bias in winter. It is concluded that the large error found in winter generally caused by double-counting of meteorological factors in predicted tides and surge forecasts. The predicted surge for 2021 based on the harmonic analysis shows seasonality, and it reduces the large negative bias shown in winter when it subtracted from the TWL forecasts with long-term tidal constituents.

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.