• Title/Summary/Keyword: long fiber reinforced composite

Search Result 101, Processing Time 0.026 seconds

Torsional Fatigue Characteristics of Aluminum/Composite Co-Cured Shafts with Axial Compressive Preload (축예하중을 가한 알루미늄/복합재료 동시경화 샤프트의 비틀림 피로 특성)

  • Kim, Jong-Woon;Hwang, Hui-Yun;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.183-186
    • /
    • 2003
  • Long shafts for power transmission should transmit torsional load with vibrational stability. Hybrid shafts made of unidirectional fiber-reinforced composite and metal have high fundamental bending natural frequency as well as high torque transmission capability. However, thermal residual stresses due to the coefficient difference of thermal expansion of the composite and metal are developed so that the high residual stresses decrease fatigue resistance of the hybrid shafts, especially at low operating temperatures. In this work, axial compressive preload was given to the shaft in order to change the residual stresses. Static and fatigue torsional tests were performed and correlated with stress analyses with respect to the preload and service temperature.

  • PDF

A Study on the Manufacturing of Screw Rotors for Air-Compressors Using RTM Process (Resin Transfer Molding을 이용한 공기 압축기용 스크류로터 제작에 관한 연구)

  • 서정도;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.139-142
    • /
    • 1999
  • Screw rotors are core parts of screw type air compressors, compressors in refrigerating machines and super chargers of automobiles etc. They are composed of a female and a male rotors which have complex section profiles and helically swept geometry. Screw type compressors have advantages of low noise, high efficiency, less needs in maintenance etc. Usually, machining process of screw rotors requires long machining time using CNC machine designed only for screw rotors, which increase the cost of production. In this work, the screw rotors for air-compressors were manufactured with fiber reinforced epoxy composite materials by resin transfer molding process. The mold for the RTM process was made of aluminum and silicon rubber and was designed for release of helical shape products. Composite screw rotors, manufactured by RTM process, have advantages of lightweight, less cost of production, good characteristics of vibration etc.

  • PDF

Development of Composite Deck 'Delta Deck' and its World Largest Application for Noolcha Bridge, Busan Port (복합소재 바닥판 '델타데크' 개발과 부상항 눌차교의 세계 최대규모 적용사례 연구)

  • Lee, Sung-Woo;Hong, Kee-Jeung;Kim, Je-In;Cho, Nam-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.545-550
    • /
    • 2007
  • Due to many advantages such as lightweight, high durability and speedy construction, increasing number of bridges of various girder types are being built recently with glass-fiber reinforced composite deck. A profile of the composite deck, called 'Delta deck', is developed which has 3 trapezoidal cells of 200mm depth. This paper introduces how to develop 'Delta deck' and its application to the world largest composite-deck bridge, which is 300m long and 35m wide and is currently under construction.

  • PDF

Bioblock technique to treat severe internal resorption with subsequent periapical pathology: a case report

  • Mark Frater;Tekla Sary;Sufyan Garoushi
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.43.1-43.9
    • /
    • 2020
  • A variety of therapeutic modalities can be used for the endodontic treatment of a traumatized tooth with internal root resorption (IRR). The authors present a case report of the successful restoration of a traumatized upper central incisor that was weakened due to severe IRR and subsequent periapical lesion formation. A 20-year-old female patient was referred to our clinic with severe internal resorption and subsequent periapical pathosis destroying the buccal bone wall. Root canal treatment had been initiated previously at another dental practice, but at that time, the patient's condition could not be managed even with several treatments. After cone-beam computed tomography imaging and proper chemomechanical cleaning, the tooth was managed with a mineral trioxide aggregate plug followed by root canal filling using short fiber-reinforced composite, known as the Bioblock technique. This report is the first documentation of the use of the Bioblock technique in the restoration of a traumatized tooth. The Bioblock technique appears to be ideal for restoring wide irregular root canals, as in cases of severe internal resorption, because it can uniquely fill out the hollow irregularities of the canal. However, further long-term clinical investigations are required to provide additional information about this new technique.

The Effect of Cyclic Loading History on the Creep of $SiC_f/Si_3N_4$ Fiber-reinforced Composite (사이클 하중이력이 $SiC_f/Si_3N_4섬유강화 복합재료의 크리프에 미치는 영향)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.35-40
    • /
    • 2000
  • The influence of cyclic loading history on the creep behavior of the 30 vol% hot-pressed $SiC_f/Si_3N_4copmposite was experimentally investigated at $1200^{\circ}C$. The duration of loading/unloading had great effects on the creep behaviors. The short term duration cyclic loading history test results showed significant reduction in the primary and steady-state creep rates. For example, 300sec loading/300sec unloading history resulted in 70% lower steady-state creep rate than that of the continuous loading. However the long term duration cyclic loading history test results showed little change in creep rates compared to those of the continuous one. The reason for the significant change in the short term duration cycles was estimated due to the change in the stress redistribution between the fiber and matrix during the creep recovery in the primary stage.

  • PDF

The Change of Mechanical Properties with Forming Conditions of Thermoplastic Composite in Compression Molding (열가소성 복합재료의 압축성형조건에 따른 기계적 특성 변화)

  • Lee, Jung-Hui;Lee, Ho-Eon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1416-1422
    • /
    • 2001
  • The objective of this work was to characterize mechanical properties of thermoplastic composites with various forming conditions in compression molding. Randomly oriented long glass fiber reinforced polypropylene(PP) was used in this work. The composite materials contained 20%, 30%, and 40% glass fiber by weight. Compression molding was conducted at various mold temperatures and charge sizes. The temperatures on the mold surface and at the material in the mid-plain were monitored during the molding. Differential Scanning Calorimeter was used to measure crystallinity at both in-side and out-side of the sheet material. Crystallinity at each temperature was also measured by X-ray diffractometer. Dimensional stability was studied at various conditions with the spring forward angle. Among the processing parameters, the crystallization time at the temperature above 130$^{\circ}C$, was found to be the most effective. Spring-forward angle was reduced and the tensile modulus was increased as the mold temperature increased.

The Application of Rule of Mixtures to Fiber-Reinforced Composites(3) - Determination of Constant "a" and "b" for Modified Rule of Mixtures Applied to Fiber-Reinforced, Sulfur-Based Composites - (목재 섬유 복합재(複合材)에 혼합이론(混合理論)의 적용에 관한 연구(硏究)(3) - 유황(硫黃) 화합물(化合物)을 사용한 목재(木材) 섬유(纖維) 복합재(複合材)에 수정된 혼합이론(混合理論)의 상수(常數) 결정(決定) -)

  • Lee, Byung-G.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.3-8
    • /
    • 1984
  • It is shown that Paul and Jones' Rule of Mixtures modified by Smith and Cox's theory can be used for the fiber-reinforced, sulfur-based composites, when the constant for the linear regression equation is given. The computation results, programmed by Hewlett Packard 75C (HP 75C) using math rom pack for the linear regression form, expressed as $E_c=\frac{1}{3}aE_fV_f+bE_mV_m$, turn out to be a=3.27-3.54 b=-2.47~-2.80. This results indicate that the factors such as density of fiber mat and the amount of matrix used have nothing for affecting the numerical value of the constants a and b of the linear regression form. Conclusively this results also show that the Paul and Jones' Rule of Mixtures which has been used for the composites made by randomly-oriented long fiber can also be used for the composites made by short fiber with the same fiber orientation such as wood and lignocellulosic fibers.

  • PDF

Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet

  • Park, Jai-woo;Yoo, Jung-han
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.441-465
    • /
    • 2015
  • This paper presents the experimental results of flexural and compression steel members strengthened with carbon fiber reinforced polymers (CFRP) sheets. In the flexural test, the five specimens were fabricated and the test parameters were the number of CFRP ply and the ratio of partial-length bonded CFRP sheets of specimen. The CFRP sheet strengthened steel beam had failure mode: CFRP sheet rupture at the mid span of steel beams. A maximum increase of 11.3% was achieved depending on the number of CFRP sheet ply and the length of CFRP sheet. In the compression test, the nine specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the length of the specimen. From the tests, for short columns it was observed that two sides would typically buckle outward and the other two sides would buckle inward. Also, for long columns, overall buckling was observed. A maximum increase of 57% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 60 transversely.

Performance of fire damaged steel reinforced high strength concrete (SRHSC) columns

  • Choi, Eun Gyu;Kim, Hee Sun;Shin, Yeong Soo
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • In this study, an experimental study is performed to understand the effect of spalling on the structural behavior of fire damaged steel reinforced high strength concrete (SRHSC) columns, and the test results of temperature distributions and the displacements at elevated temperature are analyzed. Toward this goal, three long columns are tested to investigate the effect of various test parameters on structural behavior during the fire, and twelve short columns are tested to investigate residual strength and stiffness after the fire. The test parameters are mixture ratios of polypropylene fiber (0 and 0.1 vol.%), magnitudes of applied loads (concentric loads and eccentric loads), and the time period of exposure to fire (0, 30, 60 and 90 minutes). The experimental results show that there is significant effect of loading on the structural behaviors of columns under fire. The loaded concrete columns result more explosive spalling than the unloaded columns under fire. In particular, eccentrically loaded columns are severely spalled. The temperature distributions of the concrete are not affected by the loading state if there is no spalling. However, the loading state affects the temperature distributions when there is spalling occurred. In addition, it is found that polypropylene fiber prevents spalling of both loaded and unloaded columns under fire. From these experimental findings, an equation of predicting residual load capacity of the fire damaged column is proposed.

Development of regenerative scramjet combustor with carbon fiber reinforced ceramic matrix composites (탄소섬유 강화 탄화규소 세라믹 복합소재 초음속 재생냉각 연소기 개발)

  • Kim, Seyoung;Kim, Soohyun;Han, Insub;Woo, Sangkuk;Seong, Younghoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.232-235
    • /
    • 2017
  • Scramjet combustor materials are exposed at ultra high temperature over 2000K and severe erosion environment. Inconel alloys are usually applied for combustor material however its mechanical properties are decreased beyond temperature of 1000K so that is impossible for long term operation and reuse. In this study, fiber reinforced ceramic material was used as scramjet combustor material and its feasibility studied. To increase combustion efficiency, regenerative combustor system developed and channel fabrication in composite material also studied.

  • PDF